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§ The benchmarking → optimization process for Deep Learning (DL)

workloads is ad-hoc and slow

§ There is a need for a DL optimization advising design that can 

systematically guide researchers to potential optimization 

opportunities and assess hypothetical execution scenarios

Motivation
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Benchmarking Optimization



§ What is the potential latency speedup if optimizations are 

performed?

§ Are independent layers executed in parallel?

§ Are the optimal algorithms used for convolution layers?

§ Is there any inefficiency or unexpected behavior in frameworks?

§ Does the execution fuse layers or leverage Tensor Cores? And 

what are the benefits?

Answers to the following are highly desired 

3



§ Layers are the performance building blocks

§ Frameworks use cuDNN & cuBLAS to execute layers on GPUs

– Given a specific model/HW/SW, the cuDNN & cuBLAS functions invoked 
are fixed

Observations
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GPU kernel time breakdown for all 30 models on Volta GPU

The percentage of layers that are supported in cuDNN and cuBLAS

cuDNN and cuBLAS Dominate the Compute



§ Knowing the ideal helps understand how to improve the latency

§ We introduce a new metric, “lower-bound” latency (LBL)

– Defined by the latencies of the cuDNN & cuBLAS functions corresponding
to the model layers

– Estimates the ideal latency of a model given a specific GPU HW/SW

§ (measured_latency - LBL) indicates optimization opportunities

Our Approach
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§ Computed under different scenarios.

§ Data-independent layers might be executed sequentially or in 

parallel

– LBLsequential = sum of all layer latencies
– LBLparallel = sum of layer latencies on the critical path

– LBLsequential > LBLparallel for models with parallel modules, otherwise equal

“Lower-bound” Latency (LBL)
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VGG16

…

Inception V3



§ A benchmarking and analysis design that speeds up the 

benchmarking/optimization cycle of DL models on GPUs 

§ Consists of 4 modular components:

– Model Processor
– Benchmark Generator

– Performance Database

– Analyzer

Benanza
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Design and Workflows
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The Benchmarking Workflow
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The Benchmarking Workflow
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Benanza Design and Workflows



§ Generates C++ code using the layer information to measure the

cuDNN or cuBLAS API corresponding to the layer

§ Algorithm Instantiation

– 8 different algorithms for the cuDNN convolution API
– Frameworks rely on a heuristic function to select algorithm

– Generates benchmarks for all available algorithms

Benchmark Generator
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algorithm = cudnnGetConvolutionForwardAlgorithm(layer)
cudnnConvolutionForward(layer, algorithm)



§ Layer Fusion Support

– Generates benchmarks that target the cuDNN fused API
– E.g. convolution->bias->activation, convolution->bias

§ Data Type Support

– Generates benchmarks that target different data types
– E.g. float16 for Tensor Cores

Benchmark Generator
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The Benchmarking Workflow
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Indexed by the system, data 
type, and layer information

Benanza Design and Workflows



The Analysis Workflow
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The user runs the target model using the SW/HW of interest to get the model execution profile 

Benanza Design and Workflows



The Analysis Workflow
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The user inputs the model execution profile along with the model, system, data type
The Analyzer queries the DB to inform optimizations Q1-6

Benanza Design and Workflows



§ MXNet, ONNX Runtime and PyTorch

§ 7 GPU systems from Kepler to the latest 

Turing

§ CUDA 10.1 and cuDNN7.6.3

§ Unless specified, batch size = 1

Evaluation Setup
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30 ONNX models7 GPU systems



Q1&2. LBL and Parallel Execution Analysis
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maxpool_2 MaxPool
10.228µs

conv_4 Conv
30.511µs

conv_5 Conv
30.719µs

conv_7 Conv
30.231µs

maxpool_3 MaxPool
10.102µs

relu_4 Relu
8.046µs

concat_1 Concat

relu_5 Relu
8.045µs

conv_6 Conv
47.652µs

relu_6 Relu
8.122µs

relu_7 Relu
7.963µs

conv_8 Conv
41.912µs

relu_8 Relu
8.017µs

conv_9 Conv
30.465µs

relu_9 Relu
8.017µs

... 

...

Layer Name Layer Type

Benchmark Latency

Legend:

The first Parallel module of Inception-v1

§ LBLsequential = sum of all layer 

benchmark latencies

§ LBLparallel = sum of layer 

benchmark latencies on the 

critical path
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§ Benanza Ratio (BR) = LBL / measured latency

– BRsequential = BRparallel for models without parallel modules
– BRparallel < BRsequential < 1 for models with parallel modules

Q1&2. LBL and Parallel Execution Analysis
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The sequential and parallel BR of 30 models using MXNet on Tesla V100

Data-independent layers are executed sequentially 
even though they could be run in parallel



§ Overall, the software stack is more optimized on the recent GPUs 

(Turing and Volta) and for smaller batch sizes

Q1&2. BR Across GPUs and Batch Sizes
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The geometric mean of the BR of all models
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§ Recall that in benchmark generation the convolution API is 

invoked with all available algorithms

§ The Analyzer parses the cuDNN log to determine if the cuDNN 

algorithm used by the framework is optimal

§ Cases where the choice is suboptimal, and the potential latency 

improvement are reported

Q3. Convolution Algorithm Selection Analysis
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§ Both recent and older GPU architectures can benefit from better 

cuDNN heuristics

Q3. Convolution Algorithm Selection Analysis

22

�����_��� �����_	
� ����
_�� ����
_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
���

���

���

���

���

���

�	
�� 
���

��
��
��
�

The geometric mean of the latency speedup for all models by using 
the optimal convolution algorithm



§ The expected cuDNN and cuBLAS API calls are known

§ The Analyzer compares the model execution profile against the 

expected execution to pinpoint inefficiencies within the 

framework

§ The Analyzer presents any deviation observed in cuDNN or 

cuBLAS API invocation’s parameters or their execution order

Q4. Framework Inefficiency Inspection
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§ Using Benanza we observed that MXNet ONNX model loader 

adds a padding layer before every convolution layer 

§ Unnecessary if the convolution does not use asymmetric padding

Q4. An Inefficiency in MXNet
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The speedup achieved for ResNet50-v1 by applying the MXNet optimization



§ Recall that Benanza generates benchmarks that target the cuDNN

fused API

§ The Analyzer traverses the model layers and looks for the fusion 

patterns

– Profitlayer_fusion = LBLnon-fused - LBLfused

Q5. Layer Fusion Analysis

25



§ ResNet50-v1 has the layer sequence pattern Conv -> Bias -> 

BatchNorm ->Activation

§ Benanza reports the Conv ->Bias can be fused for better latency 

Q5. Layer Fusion Analysis
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The latency speedup for ResNet50-v1 if layer fusion was performed 



Q6. Tensor Core Analysis
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§ Recall that Benanza generates benchmarks that target Tensor 

Cores

§ The Analyzer determines if the target model execution utilizes 

Tensor Cores by looking at kernel names

– ProfitTensorCore= LBLnon-TensorCore – LBLTensorCore



§ TITAN V achieves significant speedup, up to 1.72x

§ For smaller batch sizes, Tesla T4 benefits most from Tensor Cores

Q6. Tensor Core Analysis

28

The latency speedup for ResNet50-v1 if Tensor Cores were used
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§ Benanza can perform the analyses jointly

§ Up to 1.95x and 1.8x speedup can be achieved by TITAN V and 

Tesla V100 respectively

Q1,2,3,5,6. Joint Optimizations
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The latency speedup for ResNet50-v1 if parallel execution, optimal algorithm 
selections, layer fusion, and Tensor Cores were used



§ The workflow is automated, and the user only needs to compile 

and run the generated code

§ The Performance Database is continuously updated

– For new models, only the newly introduced layers are benchmarked

– Layer repeatability keeps the number of entries in the database in check

§ Components are modular and can be extended with

– New model parsers
– New cuDNN/cuBLAS API or algorithm

– Other runtimes that target other SW libraries or HW

Sustainability and Extensibility
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§ Benanza automatically generates layer-wise benchmarks for DL 

models to compute the “lower-bound” latency and inform 

optimizations on GPUs 

§ The design is sustainable and extensible, not limited to GPUs and

affords other usages, e.g.

– Helping DL compiler optimizations
– Improving work scheduling for DLaaS
– Model/framework/system advising for DL tasks

Conclusion
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