
Benanza: Automatic μBenchmark Generation to 
Compute “Lower-bound” Latency and Inform 
Optimizations of Deep Learning Models on GPUs 

Cheng Li*1, Abdul Dakkak*1, Jinjun Xiong2, Wen-mei Hwu1

University of Illinois Urbana-Champaign1, IBM Research2

{cli99, dakkak, w-hwu}@illinois.edu, jinjun@us.ibm.com



§ The benchmarking → optimization process for Deep Learning (DL)

workloads is ad-hoc and slow

§ There is a need for a DL optimization advising design that can 

systematically guide researchers to potential optimization 

opportunities and assess hypothetical execution scenarios

Motivation

2

Benchmarking Optimization



§ What is the potential latency speedup if optimizations are 

performed?

§ Are independent layers executed in parallel?

§ Are the optimal algorithms used for convolution layers?

§ Is there any inefficiency or unexpected behavior in frameworks?

§ Does the execution fuse layers or leverage Tensor Cores? And 

what are the benefits?

Answers to the following are highly desired 

3



§ Layers are the performance building blocks

§ Frameworks use cuDNN & cuBLAS to execute layers on GPUs

– Given a specific model/HW/SW, the cuDNN & cuBLAS functions invoked 
are fixed

Observations

4



5

����� ������ 	
��


� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �



�

�

�

�

�



����� �����

%
��
��
��
�

��
	

��
��
�
�

GPU kernel time breakdown for all 30 models on Volta GPU

The percentage of layers that are supported in cuDNN and cuBLAS

cuDNN and cuBLAS Dominate the Compute



§ Knowing the ideal helps understand how to improve the latency

§ We introduce a new metric, “lower-bound” latency (LBL)

– Defined by the latencies of the cuDNN & cuBLAS functions corresponding
to the model layers

– Estimates the ideal latency of a model given a specific GPU HW/SW

§ (measured_latency - LBL) indicates optimization opportunities

Our Approach

6



§ Computed under different scenarios.

§ Data-independent layers might be executed sequentially or in 

parallel

– LBLsequential = sum of all layer latencies
– LBLparallel = sum of layer latencies on the critical path

– LBLsequential > LBLparallel for models with parallel modules, otherwise equal

“Lower-bound” Latency (LBL)

7

VGG16

…

Inception V3



§ A benchmarking and analysis design that speeds up the 

benchmarking/optimization cycle of DL models on GPUs 

§ Consists of 4 modular components:

– Model Processor
– Benchmark Generator

– Performance Database

– Analyzer

Benanza

8



Design and Workflows

9

Benanza Design and Workflows



The Benchmarking Workflow

10

Benanza Design and Workflows



The Benchmarking Workflow

11

Benanza Design and Workflows



§ Generates C++ code using the layer information to measure the

cuDNN or cuBLAS API corresponding to the layer

§ Algorithm Instantiation

– 8 different algorithms for the cuDNN convolution API
– Frameworks rely on a heuristic function to select algorithm

– Generates benchmarks for all available algorithms

Benchmark Generator

12

algorithm = cudnnGetConvolutionForwardAlgorithm(layer)
cudnnConvolutionForward(layer, algorithm)



§ Layer Fusion Support

– Generates benchmarks that target the cuDNN fused API
– E.g. convolution->bias->activation, convolution->bias

§ Data Type Support

– Generates benchmarks that target different data types
– E.g. float16 for Tensor Cores

Benchmark Generator

13



The Benchmarking Workflow

14

Indexed by the system, data 
type, and layer information

Benanza Design and Workflows



The Analysis Workflow

15

The user runs the target model using the SW/HW of interest to get the model execution profile 

Benanza Design and Workflows



The Analysis Workflow

16

The user inputs the model execution profile along with the model, system, data type
The Analyzer queries the DB to inform optimizations Q1-6

Benanza Design and Workflows



§ MXNet, ONNX Runtime and PyTorch

§ 7 GPU systems from Kepler to the latest 

Turing

§ CUDA 10.1 and cuDNN7.6.3

§ Unless specified, batch size = 1

Evaluation Setup

17

30 ONNX models7 GPU systems



Q1&2. LBL and Parallel Execution Analysis

18

maxpool_2 MaxPool
10.228µs

conv_4 Conv
30.511µs

conv_5 Conv
30.719µs

conv_7 Conv
30.231µs

maxpool_3 MaxPool
10.102µs

relu_4 Relu
8.046µs

concat_1 Concat

relu_5 Relu
8.045µs

conv_6 Conv
47.652µs

relu_6 Relu
8.122µs

relu_7 Relu
7.963µs

conv_8 Conv
41.912µs

relu_8 Relu
8.017µs

conv_9 Conv
30.465µs

relu_9 Relu
8.017µs

... 

...

Layer Name Layer Type

Benchmark Latency

Legend:

The first Parallel module of Inception-v1

§ LBLsequential = sum of all layer 

benchmark latencies

§ LBLparallel = sum of layer 

benchmark latencies on the 

critical path



Be
na

nz
a 

Ra
tio

§ Benanza Ratio (BR) = LBL / measured latency

– BRsequential = BRparallel for models without parallel modules
– BRparallel < BRsequential < 1 for models with parallel modules

Q1&2. LBL and Parallel Execution Analysis

19

���������	 
���		�	

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �


�



��


��


��


��

��


�
��� �����

�
��
�
��
��
	


��
�	

�
�

The sequential and parallel BR of 30 models using MXNet on Tesla V100

Data-independent layers are executed sequentially 
even though they could be run in parallel



§ Overall, the software stack is more optimized on the recent GPUs 

(Turing and Volta) and for smaller batch sizes

Q1&2. BR Across GPUs and Batch Sizes

20

�����_��� �����_	
� ����
_�� ����
_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
���

���

���

��	

��


���

��
�� ����

�
��
�
��
��
	


��
�	

�
�

The geometric mean of the BR of all models

Be
na

nz
a 

Ra
tio



§ Recall that in benchmark generation the convolution API is 

invoked with all available algorithms

§ The Analyzer parses the cuDNN log to determine if the cuDNN 

algorithm used by the framework is optimal

§ Cases where the choice is suboptimal, and the potential latency 

improvement are reported

Q3. Convolution Algorithm Selection Analysis

21



§ Both recent and older GPU architectures can benefit from better 

cuDNN heuristics

Q3. Convolution Algorithm Selection Analysis

22

�����_��� �����_	
� ����
_�� ����
_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
���

���

���

���

���

���

�	
�� 
���

��
��
��
�

The geometric mean of the latency speedup for all models by using 
the optimal convolution algorithm



§ The expected cuDNN and cuBLAS API calls are known

§ The Analyzer compares the model execution profile against the 

expected execution to pinpoint inefficiencies within the 

framework

§ The Analyzer presents any deviation observed in cuDNN or 

cuBLAS API invocation’s parameters or their execution order

Q4. Framework Inefficiency Inspection

24



§ Using Benanza we observed that MXNet ONNX model loader 

adds a padding layer before every convolution layer 

§ Unnecessary if the convolution does not use asymmetric padding

Q4. An Inefficiency in MXNet

23

�����_��� �����_	
� ����
_�� ����
_�
�����_���� ������_��� �����_��

� � �� �� �� �� ��
����
����
����
����
���	
����
����
����
����


��
� ����

��
��
��
�

The speedup achieved for ResNet50-v1 by applying the MXNet optimization



§ Recall that Benanza generates benchmarks that target the cuDNN

fused API

§ The Analyzer traverses the model layers and looks for the fusion 

patterns

– Profitlayer_fusion = LBLnon-fused - LBLfused

Q5. Layer Fusion Analysis

25



§ ResNet50-v1 has the layer sequence pattern Conv -> Bias -> 

BatchNorm ->Activation

§ Benanza reports the Conv ->Bias can be fused for better latency 

Q5. Layer Fusion Analysis

26

�����_��� �����_	
� ����
_�� ����
_�

�����_���� ������_��� �����_��

� � �� �� �� �� ��
����
����
����
����
���	
����
����


��
� ����

��
��
��
�

The latency speedup for ResNet50-v1 if layer fusion was performed 



Q6. Tensor Core Analysis

27

§ Recall that Benanza generates benchmarks that target Tensor 

Cores

§ The Analyzer determines if the target model execution utilizes 

Tensor Cores by looking at kernel names

– ProfitTensorCore= LBLnon-TensorCore – LBLTensorCore



§ TITAN V achieves significant speedup, up to 1.72x

§ For smaller batch sizes, Tesla T4 benefits most from Tensor Cores

Q6. Tensor Core Analysis

28

The latency speedup for ResNet50-v1 if Tensor Cores were used

�����_� ����	_�
��

�
	���_��� ����	_��

� � �� �� �� �� ��
���

���

���

���

��	

���


��
� ����

��
��
��
�



§ Benanza can perform the analyses jointly

§ Up to 1.95x and 1.8x speedup can be achieved by TITAN V and 

Tesla V100 respectively

Q1,2,3,5,6. Joint Optimizations

29

�����_� ����	_�
��

�
	���_��� ����	_��

� � �� �� �� �� ��
���

���

���

���

��	

���


��
� ����

��
��
��
�

The latency speedup for ResNet50-v1 if parallel execution, optimal algorithm 
selections, layer fusion, and Tensor Cores were used



§ The workflow is automated, and the user only needs to compile 

and run the generated code

§ The Performance Database is continuously updated

– For new models, only the newly introduced layers are benchmarked

– Layer repeatability keeps the number of entries in the database in check

§ Components are modular and can be extended with

– New model parsers
– New cuDNN/cuBLAS API or algorithm

– Other runtimes that target other SW libraries or HW

Sustainability and Extensibility

30



§ Benanza automatically generates layer-wise benchmarks for DL 

models to compute the “lower-bound” latency and inform 

optimizations on GPUs 

§ The design is sustainable and extensible, not limited to GPUs and

affords other usages, e.g.

– Helping DL compiler optimizations
– Improving work scheduling for DLaaS
– Model/framework/system advising for DL tasks

Conclusion

31



32

Thank you
More information in the paper

Cheng Li*1, Abdul Dakkak*1, Jinjun Xiong2, Wen-mei Hwu1

University of Illinois Urbana-Champaign1, IBM Research2


