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Example: ResNet50

Deep Learning (DL) Model
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A graph where each vertex is a layer (or operator) and an edge represents data transfer
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DL Inference Pipeline 
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- Image decoding 
- Resizing
- Normalization
- Type conversion

Input Image
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▪ DL models are used in many application domains

▪ Diverse DL models, as well as hardware/software (HW/SW) 
solutions, are increasingly being proposed

▪ However, evaluating and comparing DL innovations is arduous 
and error-prone due to lack of standard

▪ There is an urging need for a DL benchmarking platform that 
consistently evaluates and compares different DL models across 
HW/SW stacks, while coping with the fast-paced and diverse DL 
landscape

Motivation
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▪ A DL benchmarking platform aiming to facilitate evaluation and 
comparison of DL innovations

▪ 10 objectives inform the design

MLModelScope
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1. Reproducible Evaluation

2. Consistent Evaluation

3. Framework & Hardware 
Agnostic

4. Scalable Evaluation

5. Artifact Versioning

6. Efficient Evaluation
Workflow

7. Different Benchmarking 
Scenarios

8. Benchmarking Analysis and 
Reporting

9. Model Execution Inspection

10. UIs for different use cases

Desired Features for a DL benchmarking platform
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▪ Model, dataset, evaluation method, and HW/SW stack must work 
in unison to maintain the accuracy and performance claims 

▪ Reproducibility is currently a “pain-point” within the DL 
community

– Lack of standard specification

▪ All aspects of a model evaluation must be specified and 
provisioned by the design

1. Reproducible Evaluation
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▪ Models are published in an ad-hoc manner

– A tight coupling between model execution and the underlying HW/SW 

– Difficult to quantify or isolate the benefits of an individual component

▪ Fair comparisons require a consistent evaluation methodology 
rather than running ad-hoc scripts

2. Consistent Evaluation
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▪ Many choices of frameworks and hardware for DL models

▪ Each framework or hardware has its own use scenarios, features, 
and performance characteristics

▪ The design must support different frameworks and hardware,
and does not require modifications to the frameworks

3. Framework & Hardware Agnostic
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▪ DL innovations are introduced at a rapid pace

▪ Performing DL evaluations with different model/HW/SW setups 
in parallel

▪ A centralized management of the benchmarking results

▪ E.g., choosing the best hardware out of N candidates for a model 
is ideally performed in parallel and the results should be 
automatically gathered for comparison

4. Scalable Evaluation

10



▪ DL frameworks are continuously updated by the DL community

▪ Many unofficial variants of models, frameworks, and datasets as 
researchers might update or modify them to suite their needs 

▪ To enable management and comparison of model evaluations , 
evaluation artifacts (models, frameworks, and datasets) should 
be versioned 

5. Artifact Versioning
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▪ The data loading and pre-/post-processing can take a non-
negligible amount of time, and become a limiting factor for quick 
evaluations 

▪ The evaluation workflow should handle and process data 
efficiently

6. Efficient Evaluation Workflow 
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▪ DL benchmarking is performed under specific scenario 

– Online, offline, or interactive applications on mobile, edge, or cloud 
systems

▪ The design should support common inference scenarios and be 
flexible to support custom or emerging workloads as well

7. Different Benchmarking Scenarios
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▪ Benchmarking produces raw data which needs to be correlated 
and analyzed to produce human-readable results 

▪ An automated mechanism to summarize and visualize these 
results within a benchmarking platform can help users quickly 
understand and compare the results 

8. Benchmarking Analysis and Reporting 
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▪ The complexity of DL model evaluation makes performance 
debugging challenging 

– each level within the HW/SW abstraction hierarchy can be a suspect 
when things go awry

▪ To ease inspecting model execution bottlenecks, the design 
should provide tracing capability at all levels of HW/SW stack

– Integration with XSP

9. Model Execution Inspection
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▪ Command-line interface is often used in scripts to quickly 
perform combinational evaluations across models, frameworks, 
and systems 

▪ Web UI serves as a “push- button” solution to benchmarking and 
provides an intuitive flow for specifying, managing evaluations, 
and visualizing benchmarking results 

10. Different User Interfaces

16



▪ A DL artifact exchange specification to 
describe DL inference from model, data, 
software and hardware aspects 

▪ A distributed runtime that consumes the
DL specification

– Web and command line UI

– Middleware, e.g. registry, database, tracer

– Framework agents

– Other modular components

MLModelScope Design
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▪ Specifies the HW/SW stack to 
instantiate and how to 
evaluate the model

– Container Images 

– Inputs and Outputs and Pre-
/Post-Processing 

– Model Sources 

– Asset Versioning

MLModelScope Manifest
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Example model manifest



User Inputs – the required inputs for model evaluation 

Client - the web UI or command-line interface that sends REST requests to the Sever

Server - acts on the client requests and performs REST API handling, dispatching the 
model evaluation tasks to the Agents 

Agents - runs on different systems of interest and perform model evaluation based on 
requests sent by the server

Framework Predictor – resides in an Agent and wraps around a framework into a 
consistent interface across different DL frameworks

Middleware - a set of support services

MLModelScope Runtime
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MLModelScope Runtime and Workflows
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▪ Different framework backends

– TensorFlow, PyTorch, Caffe2, MXNet, Caffe, CNTK, and TensorRT

▪ Different hardware support

– ARM, PowerPC, and X86 with CPU, GPU, and FPGA

▪ Common ML models (>300) and datasets

▪ Integration with XSP

– Built-in framework, library, and hardware profilers

▪ Allows users to add models, frameworks, or profilers

Current Support
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▪ We demonstrated MLModelScope by using it to evaluate a set of 
models on 4 representative  systems and show how model, 
hardware, and framework selection affects model accuracy and 
performance under different bench marking scenarios

Evaluation

24



▪ The inspection capability helps users understand the model 
execution and identify performance bottlenecks

Model Execution Introspection
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Example: AlexNet “cold-start” inferenceA hierarchical view of model execution



▪ A big hurdle in adopting DL innovations is to evaluate, analyze, 
and compare their performance

▪ We identified 10 desired features of a DL benchmarking platform 
and described MLModelScope that achieves these design 
objectives

▪ MLModelScope offers a unified and holistic way to evaluate and 
inspect DL models, and provides an automated analysis and 
reporting workflow to summarize the results

Conclusion
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Resources
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▪ docs.mlmodelscope.org

▪ github.com/rai-project

https://docs.mlmodelscope.org/
https://github.com/rai-project
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