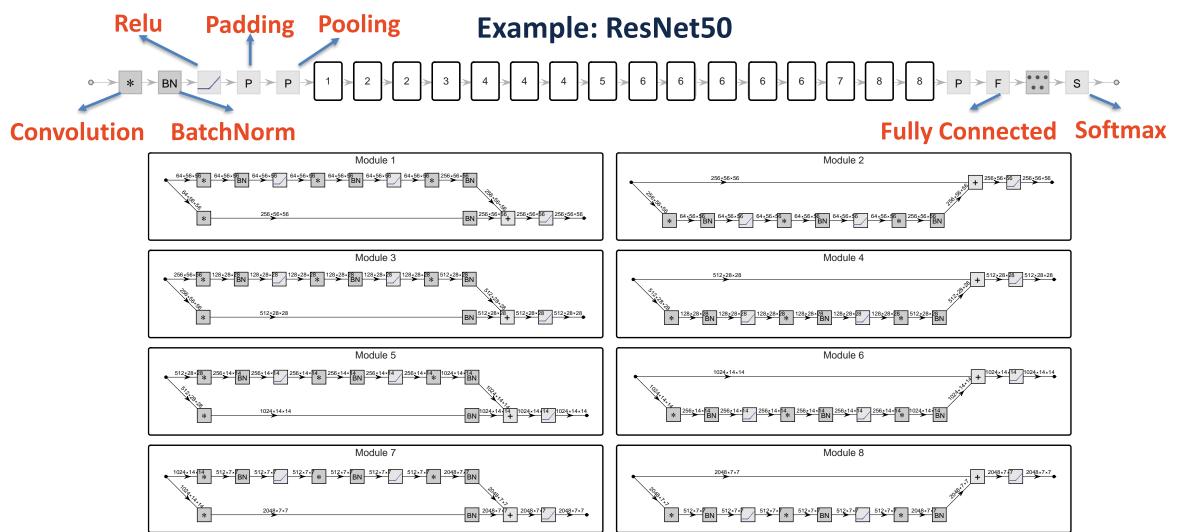
The Design and Implementation of a Scalable DL Benchmarking Platform

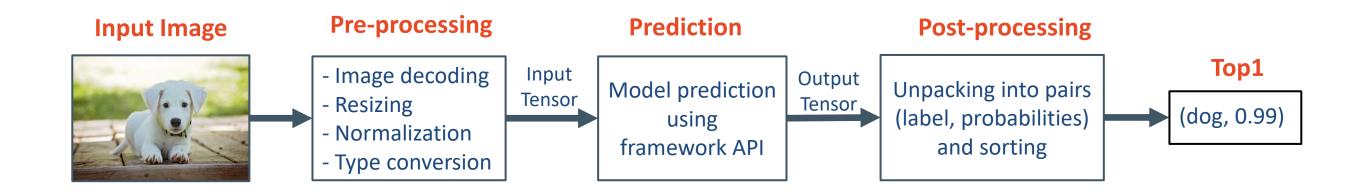
Cheng Li^{1*}, Abdul Dakkak^{1*}, Jinjun Xiong², Wen-mei Hwu¹ University of Illinois Urbana-Champaign¹, IBM Research² 10/14/2020

Deep Learning (DL) Model

A graph where each vertex is a layer (or operator) and an edge represents data transfer



DL Inference Pipeline

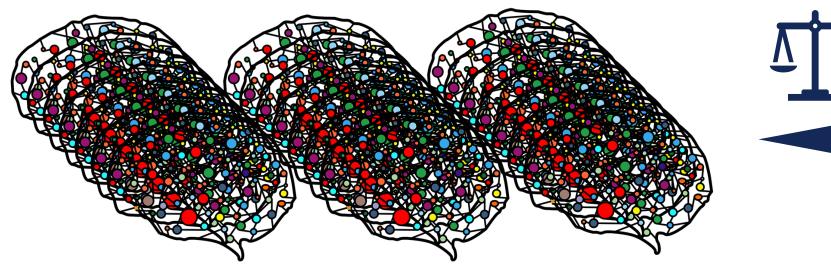


Motivation

- DL models are used in many application domains
- Diverse DL models, as well as hardware/software (HW/SW) solutions, are increasingly being proposed
- However, evaluating and comparing DL innovations is arduous and error-prone due to lack of standard
- There is an urging need for a DL benchmarking platform that consistently evaluates and compares different DL models across HW/SW stacks, while coping with the fast-paced and diverse DL landscape

MLModelScope

A DL benchmarking platform aiming to facilitate evaluation and comparison of DL innovations



10 objectives inform the design

Desired Features for a DL benchmarking platform

- 1. Reproducible Evaluation
- 2. Consistent Evaluation
- 3. Framework & Hardware Agnostic
- 4. Scalable Evaluation
- 5. Artifact Versioning
- 6. Efficient Evaluation Workflow

- 7. Different Benchmarking Scenarios
- 8. Benchmarking Analysis and Reporting
- 9. Model Execution Inspection
- 10. Uls for different use cases

1. Reproducible Evaluation

- Model, dataset, evaluation method, and HW/SW stack must work in unison to maintain the accuracy and performance claims
- Reproducibility is currently a "pain-point" within the DL community
 - Lack of standard specification
- All aspects of a model evaluation must be specified and provisioned by the design

2. Consistent Evaluation

- Models are published in an ad-hoc manner
 - A tight coupling between model execution and the underlying HW/SW
 - Difficult to quantify or isolate the benefits of an individual component
- Fair comparisons require a consistent evaluation methodology rather than running ad-hoc scripts

3. Framework & Hardware Agnostic

- Many choices of frameworks and hardware for DL models
- Each framework or hardware has its own use scenarios, features, and performance characteristics
- The design must support different frameworks and hardware, and does not require modifications to the frameworks

4. Scalable Evaluation

- DL innovations are introduced at a rapid pace
- Performing DL evaluations with different model/HW/SW setups in parallel
- A centralized management of the benchmarking results
- E.g., choosing the best hardware out of N candidates for a model is ideally performed in parallel and the results should be automatically gathered for comparison

5. Artifact Versioning

- DL frameworks are continuously updated by the DL community
- Many unofficial variants of models, frameworks, and datasets as researchers might update or modify them to suite their needs
- To enable management and comparison of model evaluations, evaluation artifacts (models, frameworks, and datasets) should be versioned

6. Efficient Evaluation Workflow

- The data loading and pre-/post-processing can take a nonnegligible amount of time, and become a limiting factor for quick evaluations
- The evaluation workflow should handle and process data efficiently

7. Different Benchmarking Scenarios

- DL benchmarking is performed under specific scenario
 - Online, offline, or interactive applications on mobile, edge, or cloud systems
- The design should support common inference scenarios and be flexible to support custom or emerging workloads as well

8. Benchmarking Analysis and Reporting

- Benchmarking produces raw data which needs to be correlated and analyzed to produce human-readable results
- An automated mechanism to summarize and visualize these results within a benchmarking platform can help users quickly understand and compare the results

9. Model Execution Inspection

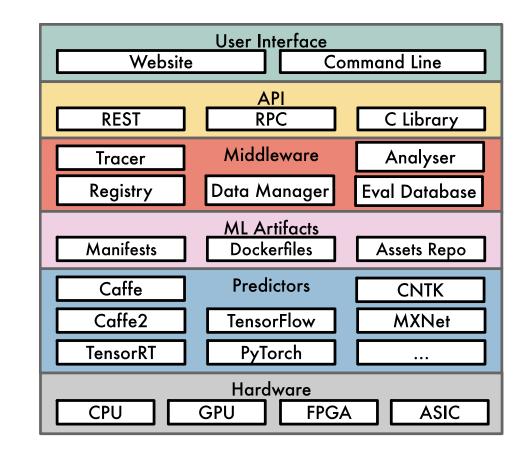
- The complexity of DL model evaluation makes performance debugging challenging
 - each level within the HW/SW abstraction hierarchy can be a suspect when things go awry
- To ease inspecting model execution bottlenecks, the design should provide tracing capability at all levels of HW/SW stack
 - Integration with XSP

10. Different User Interfaces

- Command-line interface is often used in scripts to quickly perform combinational evaluations across models, frameworks, and systems
- Web UI serves as a "push- button" solution to benchmarking and provides an intuitive flow for specifying, managing evaluations, and visualizing benchmarking results

MLModelScope Design

- A DL artifact exchange specification to describe DL inference from model, data, software and hardware aspects
- A distributed runtime that consumes the DL specification
 - Web and command line UI
 - Middleware, e.g. registry, database, tracer
 - Framework agents
 - Other modular components



MLModelScope Manifest

- Specifies the HW/SW stack to instantiate and how to evaluate the model
 - Container Images
 - Inputs and Outputs and Pre-/Post-Processing
 - Model Sources
 - Asset Versioning

```
name: MLPerf_ResNet50_v1.5 # model name
    version: 1.0.0 # semantic version of the model
    description: ...
    framework: # framework information
      name: TensorFlow
      version: '>=1.12.0 <2.0' # framework ver constraint</pre>
    inputs: # model inputs
      - type: image # first input modality
        layer_name: 'input_tensor'
        element_type: float32
10
11
        steps: # pre-processing steps
12
           - decode:
13
               data_layout: NHWC
14
               color_mode: RGB
15
           - resize:
16
               dimensions: [3, 224, 224]
17
               method: bilinear
18
               keep_aspect_ratio: true
19
           - normalize:
20
               mean: [123.68, 116.78, 103.94]
21
               rescale: 1.0
22
    outputs: # model outputs
      - type: probability # first output modality
23
24
         laver_name: prob
25
        element_type: float32
        steps: # post-processing steps
26
27
           - argsort:
28
               labels_url: https://.../synset.txt
29
    preprocess: [[code]]
    postprocess: [[code]]
30
31
    model: # model sources
      base_url: https://zenodo.org/record/2535873/files/
32
33
      graph_path: resnet50_v1.pb
34
      checksum: 7b94a2da05d...23a46bc08886
    attributes: # extra model attributes
35
36
      training_dataset: # dataset used for training
37
         - name: ImageNet
        - version: 1.0.0
38
```

Example model manifest

MLModelScope Runtime

User Inputs – the required inputs for model evaluation

Client - the web UI or command-line interface that sends REST requests to the Sever

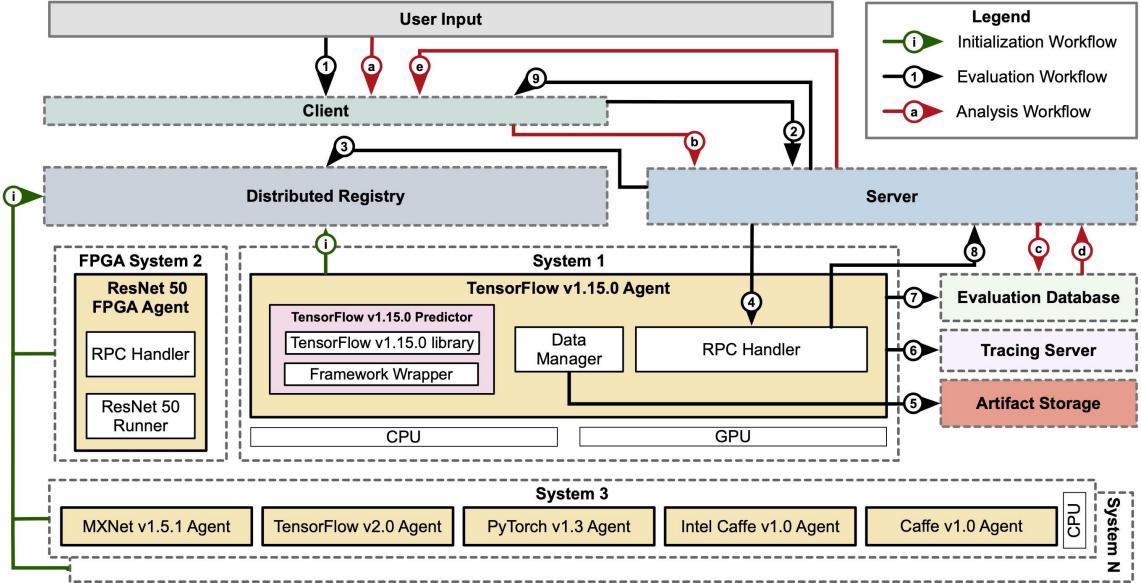
Server - acts on the client requests and performs REST API handling, dispatching the model evaluation tasks to the Agents

Agents - runs on different systems of interest and perform model evaluation based on requests sent by the server

Framework Predictor – resides in an Agent and wraps around a framework into a consistent interface across different DL frameworks

Middleware - a set of support services

MLModelScope Runtime and Workflows



```
service Predict {
    message PredictOptions {
      enum TraceLevel {
        NONE
 4
                   = 0:
        MODEL
                   = 1;
                        // steps in the evaluation pipeline
                       // layers within the framework and above
 6
        FRAMEWORK = 2:
        SYSTEM
                  = 3; // the system profilers and above
                   = 4:
                        // includes all of the above
8
        FULL
9
      }
      TraceLevel trace_level = 1;
      Options
                  options
                              = 2;
12
    }
    message OpenRequest {
      string model_name
14
                                            = 1:
      string model_version
                                            = 2;
      string framework_name
                                            = 3:
17
      string framework_version
                                            = 4:
      string model_manifest
                                            = 5:
      BenchmarkScenario benchmark_scenario = 6;
      PredictOptions
                         predict_options
                                            = 7:
21
    }
22
    // Opens a predictor and returns a PredictorHandle.
    rpc Open(OpenRequest) returns (PredictorHandle){}
24
    // Close a predictor and clear its memory.
25
    rpc Close(PredictorHandle) returns (CloseResponse) {}
   // Predict receives a stream of user data and runs
27
   // the predictor on each element of the data according
   // to the provided benchmark scenario.
29
    rpc Predict(PredictorHandlePredictorHandle, UserInput) ↔
          returns (FeaturesResponse) {}
    }
```

Listing 4. MLModelScope's minimal gRPC interface in protocol buffer format.

Current Support

- Different framework backends
 - TensorFlow, PyTorch, Caffe2, MXNet, Caffe, CNTK, and TensorRT
- Different hardware support
 - ARM, PowerPC, and X86 with CPU, GPU, and FPGA
- Common ML models (>300) and datasets
- Integration with XSP
 - Built-in framework, library, and hardware profilers
- Allows users to add models, frameworks, or profilers

Evaluation

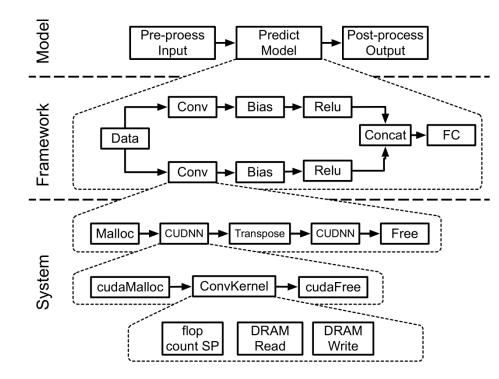
 We demonstrated MLModelScope by using it to evaluate a set of models on 4 representative systems and show how model, hardware, and framework selection affects model accuracy and performance under different bench marking scenarios

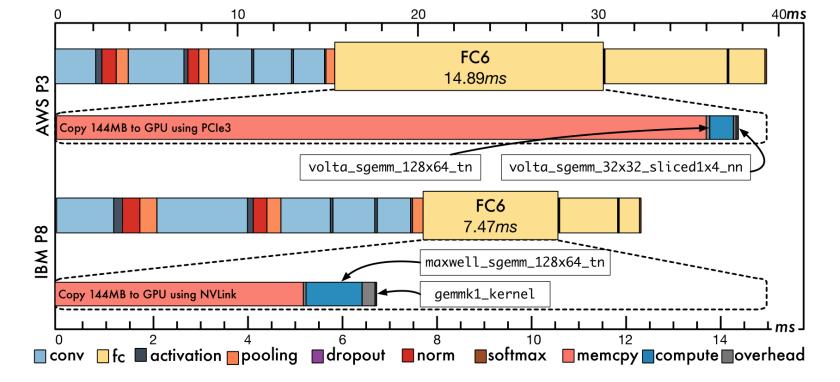
Name	CPU	GPU	GPU Architecture	GPU Theoretical Flops (TFlops)	GPU Memory Bandwidth (GB/s)	Cost (\$/hr)
AWS P3 (2XLarge)	Intel Xeon E5-2686 v4 @ 2.30GHz	Tesla V100-SXM2-16GB	Volta	15.7	900	3.06
AWS G3 (XLarge)	Intel Xeon E5-2686 v4 @ 2.30GHz	Tesla M60	Maxwell	9.6	320	0.90
AWS P2 (XLarge)	Intel Xeon E5-2686 v4 @ 2.30GHz	Tesla K80	Kepler	5.6	480	0.75
IBM P8	IBM S822LC Power8 @ 3.5GHz	Tesla P100-SXM2	Pascal	10.6	732	

Table 1. Four systems with Volta, Pascal, Maxwell, and Kepler GPUs are selected for evaluation.

Model Execution Introspection

The inspection capability helps users understand the model execution and identify performance bottlenecks





A hierarchical view of model execution

Example: AlexNet "cold-start" inference

Conclusion

- A big hurdle in adopting DL innovations is to evaluate, analyze, and compare their performance
- We identified 10 desired features of a DL benchmarking platform and described MLModelScope that achieves these design objectives
- MLModelScope offers a unified and holistic way to evaluate and inspect DL models, and provides an automated analysis and reporting workflow to summarize the results

Resources

- docs.mlmodelscope.org
- github.com/rai-project

MLMODELSCOPE

MLMODELSCOPE

affe 🕶

Q Search... Current Support Design both arduous and error-prone — stifling the adoption of the innovations. Installation Usage Extending Showcase Related Work Papers 🖸 Try Me 📢 Credits 🕲 Clear History

C code quality A docker stars 0 docker pulls 625 582.4MB 24 layers version amd64 readme style standard The current Deep Learning (DL) landscape is fast-paced and is rife with non-uniform models, hardware/software (HW/SW) stacks, but lacks a DL benchmarking platform to facilitate evaluation and comparison of DL innovations, be it models, frameworks, libraries, or hardware. Due to the lack of a benchmarking platform, the current practice of evaluating the benefits of proposed DL innovations is

MLModelScope is a framework- and hardware-agnostic distributed platform for benchmarking and profiling DL models across datasets/frameworks/systems. MLModelScope offers a unified and holistic way to evaluate and inspect DL models, making it easier to reproduce, compare, and analyze accuracy or performance claims of models or systems.

More specifically, MLModelScope:

- proposes a specification to define DL model evaluations
- · introduces techniques to consume the specification and provision the evaluation workflow using the specified HW/SW stack
- uses a distributed scheme to manage, schedule, and handle model evaluation requests;
- · defines common abstraction API across frameworks
- provides across-stack tracing capability that allows users to inspect model execution at different HW/SW abstraction levels
- defines an automated evaluation analysis workflow for analyzing and reporting evaluation results
- · exposes the capabilities through a web and command-line interface

Thank you

Cheng Li^{1*}, Abdul Dakkak^{1*}, Jinjun Xiong², Wen-mei Hwu¹ University of Illinois Urbana-Champaign¹, IBM Research²