
The Design and Implementation of a
Scalable DL Benchmarking Platform

10/14/2020

Cheng Li1*, Abdul Dakkak1*, Jinjun Xiong2, Wen-mei Hwu1

University of Illinois Urbana-Champaign1, IBM Research2

Example: ResNet50

Deep Learning (DL) Model

2

BN P P P F S

Module 1 Module 2

1 2 2 3

Module 3 Module 4

4 4 4 5

Module 5 Module 6

6 6 6 6 6 7

Module 7 Module 8

8 8

BN +

BN BN BN

64
56

56

64 56 56

256 56 56 256 56 56

64 56 56 64 56 56 64 56 56 64 56 56 64 56 56 64 56 56 256 56 56

256
56

56

256 56 56 256 56 56

+

BN BN BN

256 56 56

256
56

56

64 56 56 64 56 56 64 56 56 64 56 56 64 56 56 64 56 56 256 56 56

25
6

56
56

256 56 56 256 56 56

BN +

BN BN BN

256
56

56

256 56 56

512 28 28 512 28 28

128 28 28 128 28 28 128 28 28 128 28 28 128 28 28 128 28 28 512 28 28

512
28

28

512 28 28 512 28 28

+

BN BN BN

512 28 28

512
28

28

128 28 28 128 28 28 128 28 28 128 28 28 128 28 28 128 28 28 512 28 28

51
2

28
28

512 28 28 512 28 28

BN +

BN BN BN

512
28

28

512 28 28

1024 14 14 1024 14 14

256 14 14 256 14 14 256 14 14 256 14 14 256 14 14 256 14 14 1024 14 14

1024
14

14
1024 14 14 1024 14 14

+

BN BN BN

1024 14 14

1024
14

14
256 14 14 256 14 14 256 14 14 256 14 14 256 14 14 256 14 14 1024 14 14

10
24

14
14

1024 14 14 1024 14 14

BN +

BN BN BN
1024

14
14

1024 14 14

2048 7 7 2048 7 7

512 7 7 512 7 7 512 7 7 512 7 7 512 7 7 512 7 7 2048 7 7

2048
7

7

2048 7 7 2048 7 7

+

BN BN BN

2048 7 7

2048
7

7

512 7 7 512 7 7 512 7 7 512 7 7 512 7 7 512 7 7 2048 7 7

20
48

7
7

2048 7 7 2048 7 7

Convolution BatchNorm

Relu Padding

Fully Connected Softmax

A graph where each vertex is a layer (or operator) and an edge represents data transfer

BN P P P F S

Module 1 Module 2

1 2 2 3

Module 3 Module 4

4 4 4 5

Module 5 Module 6

6 6 6 6 6 7

Module 7 Module 8

8 8

BN +

BN BN BN

64
56

56

64 56 56

256 56 56 256 56 56

64 56 56 64 56 56 64 56 56 64 56 56 64 56 56 64 56 56 256 56 56

256
56

56

256 56 56 256 56 56

+

BN BN BN

256 56 56

256
56

56

64 56 56 64 56 56 64 56 56 64 56 56 64 56 56 64 56 56 256 56 56

25
6

56
56

256 56 56 256 56 56

BN +

BN BN BN

256
56

56

256 56 56

512 28 28 512 28 28

128 28 28 128 28 28 128 28 28 128 28 28 128 28 28 128 28 28 512 28 28

512
28

28

512 28 28 512 28 28

+

BN BN BN

512 28 28

512
28

28

128 28 28 128 28 28 128 28 28 128 28 28 128 28 28 128 28 28 512 28 28

51
2

28
28

512 28 28 512 28 28

BN +

BN BN BN

512
28

28

512 28 28

1024 14 14 1024 14 14

256 14 14 256 14 14 256 14 14 256 14 14 256 14 14 256 14 14 1024 14 14

1024
14

14
1024 14 14 1024 14 14

+

BN BN BN

1024 14 14

1024
14

14
256 14 14 256 14 14 256 14 14 256 14 14 256 14 14 256 14 14 1024 14 14

10
24

14
14

1024 14 14 1024 14 14

BN +

BN BN BN
1024

14
14

1024 14 14

2048 7 7 2048 7 7

512 7 7 512 7 7 512 7 7 512 7 7 512 7 7 512 7 7 2048 7 7

2048
7

7

2048 7 7 2048 7 7

+

BN BN BN

2048 7 7

2048
7

7

512 7 7 512 7 7 512 7 7 512 7 7 512 7 7 512 7 7 2048 7 7

20
48

7
7

2048 7 7 2048 7 7

Pooling

DL Inference Pipeline

3

- Image decoding
- Resizing
- Normalization
- Type conversion

Input Image

Input
Tensor Model prediction

using
framework API

Unpacking into pairs
(label, probabilities)

and sorting

Output
Tensor

PredictionPre-processing Post-processing

(dog, 0.99)

Top1

▪ DL models are used in many application domains

▪ Diverse DL models, as well as hardware/software (HW/SW)
solutions, are increasingly being proposed

▪ However, evaluating and comparing DL innovations is arduous
and error-prone due to lack of standard

▪ There is an urging need for a DL benchmarking platform that
consistently evaluates and compares different DL models across
HW/SW stacks, while coping with the fast-paced and diverse DL
landscape

Motivation

4

▪ A DL benchmarking platform aiming to facilitate evaluation and
comparison of DL innovations

▪ 10 objectives inform the design

MLModelScope

5

1. Reproducible Evaluation

2. Consistent Evaluation

3. Framework & Hardware
Agnostic

4. Scalable Evaluation

5. Artifact Versioning

6. Efficient Evaluation
Workflow

7. Different Benchmarking
Scenarios

8. Benchmarking Analysis and
Reporting

9. Model Execution Inspection

10. UIs for different use cases

Desired Features for a DL benchmarking platform

6

▪ Model, dataset, evaluation method, and HW/SW stack must work
in unison to maintain the accuracy and performance claims

▪ Reproducibility is currently a “pain-point” within the DL
community

– Lack of standard specification

▪ All aspects of a model evaluation must be specified and
provisioned by the design

1. Reproducible Evaluation

7

▪ Models are published in an ad-hoc manner

– A tight coupling between model execution and the underlying HW/SW

– Difficult to quantify or isolate the benefits of an individual component

▪ Fair comparisons require a consistent evaluation methodology
rather than running ad-hoc scripts

2. Consistent Evaluation

8

▪ Many choices of frameworks and hardware for DL models

▪ Each framework or hardware has its own use scenarios, features,
and performance characteristics

▪ The design must support different frameworks and hardware,
and does not require modifications to the frameworks

3. Framework & Hardware Agnostic

9

▪ DL innovations are introduced at a rapid pace

▪ Performing DL evaluations with different model/HW/SW setups
in parallel

▪ A centralized management of the benchmarking results

▪ E.g., choosing the best hardware out of N candidates for a model
is ideally performed in parallel and the results should be
automatically gathered for comparison

4. Scalable Evaluation

10

▪ DL frameworks are continuously updated by the DL community

▪ Many unofficial variants of models, frameworks, and datasets as
researchers might update or modify them to suite their needs

▪ To enable management and comparison of model evaluations ,
evaluation artifacts (models, frameworks, and datasets) should
be versioned

5. Artifact Versioning

11

▪ The data loading and pre-/post-processing can take a non-
negligible amount of time, and become a limiting factor for quick
evaluations

▪ The evaluation workflow should handle and process data
efficiently

6. Efficient Evaluation Workflow

12

▪ DL benchmarking is performed under specific scenario

– Online, offline, or interactive applications on mobile, edge, or cloud
systems

▪ The design should support common inference scenarios and be
flexible to support custom or emerging workloads as well

7. Different Benchmarking Scenarios

13

▪ Benchmarking produces raw data which needs to be correlated
and analyzed to produce human-readable results

▪ An automated mechanism to summarize and visualize these
results within a benchmarking platform can help users quickly
understand and compare the results

8. Benchmarking Analysis and Reporting

14

▪ The complexity of DL model evaluation makes performance
debugging challenging

– each level within the HW/SW abstraction hierarchy can be a suspect
when things go awry

▪ To ease inspecting model execution bottlenecks, the design
should provide tracing capability at all levels of HW/SW stack

– Integration with XSP

9. Model Execution Inspection

15

▪ Command-line interface is often used in scripts to quickly
perform combinational evaluations across models, frameworks,
and systems

▪ Web UI serves as a “push- button” solution to benchmarking and
provides an intuitive flow for specifying, managing evaluations,
and visualizing benchmarking results

10. Different User Interfaces

16

▪ A DL artifact exchange specification to
describe DL inference from model, data,
software and hardware aspects

▪ A distributed runtime that consumes the
DL specification

– Web and command line UI

– Middleware, e.g. registry, database, tracer

– Framework agents

– Other modular components

MLModelScope Design

17

▪ Specifies the HW/SW stack to
instantiate and how to
evaluate the model

– Container Images

– Inputs and Outputs and Pre-
/Post-Processing

– Model Sources

– Asset Versioning

MLModelScope Manifest

18

Example model manifest

User Inputs – the required inputs for model evaluation

Client - the web UI or command-line interface that sends REST requests to the Sever

Server - acts on the client requests and performs REST API handling, dispatching the
model evaluation tasks to the Agents

Agents - runs on different systems of interest and perform model evaluation based on
requests sent by the server

Framework Predictor – resides in an Agent and wraps around a framework into a
consistent interface across different DL frameworks

Middleware - a set of support services

MLModelScope Runtime

19

MLModelScope Runtime and Workflows

20

21

▪ Different framework backends

– TensorFlow, PyTorch, Caffe2, MXNet, Caffe, CNTK, and TensorRT

▪ Different hardware support

– ARM, PowerPC, and X86 with CPU, GPU, and FPGA

▪ Common ML models (>300) and datasets

▪ Integration with XSP

– Built-in framework, library, and hardware profilers

▪ Allows users to add models, frameworks, or profilers

Current Support

23

▪ We demonstrated MLModelScope by using it to evaluate a set of
models on 4 representative systems and show how model,
hardware, and framework selection affects model accuracy and
performance under different bench marking scenarios

Evaluation

24

▪ The inspection capability helps users understand the model
execution and identify performance bottlenecks

Model Execution Introspection

25

Example: AlexNet “cold-start” inferenceA hierarchical view of model execution

▪ A big hurdle in adopting DL innovations is to evaluate, analyze,
and compare their performance

▪ We identified 10 desired features of a DL benchmarking platform
and described MLModelScope that achieves these design
objectives

▪ MLModelScope offers a unified and holistic way to evaluate and
inspect DL models, and provides an automated analysis and
reporting workflow to summarize the results

Conclusion

26

Resources

27

▪ docs.mlmodelscope.org

▪ github.com/rai-project

https://docs.mlmodelscope.org/
https://github.com/rai-project

28

Thank you
Cheng Li1*, Abdul Dakkak1*, Jinjun Xiong2, Wen-mei Hwu1

University of Illinois Urbana-Champaign1, IBM Research2

