Evaluating Characteristics of CUDA Communication Primitives
on High-Bandwidth Interconnects

Carl Pearson, Abdul Dakkak,
Sarah Hashash, Cheng Li

University of Illinois
Urbana-Champaign
Urbana, Illinois
{pearson,dakkak}@illinois.edu
{hashash2,cli99}@illinois.edu

ABSTRACT

Data-intensive applications such as machine learning and analyt-
ics have created a demand for faster interconnects to avert the
memory bandwidth wall and allow GPUs to be effectively lever-
aged for lower compute intensity tasks. This has resulted in wide
adoption of heterogeneous systems with varying underlying inter-
connects, and has delegated the task of understanding and copying
data to the system or application developer. No longer is a malloc
followed by memcpy the only or dominating modality of data trans-
fer; application developers are faced with additional options such
as unified memory and zero-copy memory. Data transfer perfor-
mance on these systems is now impacted by many factors including
data transfer modality, system interconnect hardware details, CPU
caching state, CPU power management state, driver policies, virtual
memory paging efficiency, and data placement.

This paper presents Comm|Scope, a set of microbenchmarks
designed for system and application developers to understand mem-
ory transfer behavior across different data placement and exchange
scenarios. Comm|Scope comprehensively measures the latency and
bandwidth of CUDA data transfer primitives, and avoids common
pitfalls in ad-hoc measurements by controlling CPU caches, clock
frequencies, and avoids measuring synchronization costs imposed
by the measurement methodology where possible. This paper also
presents an evaluation of Comm|Scope on systems featuring the
POWER and x86 CPU architectures and PCle 3, NVLink 1, and
NVLink 2 interconnects. These systems are chosen as representa-
tive configurations of current high-performance GPU platforms.
Comm|Scope measurements can serve to update insights about the
relative performance of data transfer methods on current systems.
This work also reports insights for how high-level system design
choices affect the performance of these data transfers, and how
developers can optimize applications on these systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’19, April 7-11, 2019, Mumbai, India

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6239-9/19/04...$15.00
https://doi.org/10.1145/3297663.3310299

I-Hsin Chung, Jinjun Xiong
IBM T. J. Watson Research Center
Yorktown Heights, New York
{ihchung,jinjun}@us.ibm.com

Wen-mei Hwu
University of Illinois
Urbana-Champaign

Urbana, Illinois
w-hwu@illinois.edu

CCS CONCEPTS

« General and reference — Measurement; Performance; - Hard-
ware — Buses and high-speed links;

KEYWORDS
CUDA, GPU, NVLink, Benchmarking, POWER, x86, NUMA

ACM Reference Format:
Carl Pearson, Abdul Dakkak, Sarah Hashash, Cheng Li, I-Hsin Chung,

Jinjun Xiong, and Wen-mei Hwu. 2019. Evaluating Characteristics of CUDA

Communication Primitives on High-Bandwidth Interconnects. In Tenth
ACM/SPEC International Conference on Performance Engineering (ICPE ’19),
April 7-11, 2019, Mumbai, India. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3297663.3310299

1 INTRODUCTION

Multi-GPU systems are increasinglycommon and pivotal in tackling
problems arising in big data, machine learning, and HPC. Today,
a variety of systems are available for cloud usage [8, 16, 26] and
HPC clusters [1, 2, 25] with 2-, 4-, 8-, or 16-GPUs connected via
varying interconnect typologies. However, there is currently a lack
of tools that facilitate comprehensive understanding of the behavior
of such systems under different data placement and communication
scenarios.

Comprehensive understanding demands comprehensive mea-
surement across transfer types and sizes, and a systematic methodol-
ogy, since ad-hoc data transfer measurements — frequently carried
out in the course of application design — can have common pitfalls.
This paper proposes both a new benchmark suite and describes a
methodology for systematic measurement of data transfers. More
specifically, this paper makes the following contributions:

o Presents a comprehensive set of latency and bandwidth microbench-
marks for NUMA-aware point-to-point CPU-GPU and GPU-GPU
bulk transfer primitives in Nvidia’s CUDA, including analogous
zero-copy and unified memory operations.

o Systematically describes and addresses measurement pitfalls: de-
scribing the effects of CPU caches, CPU clock speed, and syn-
chronization costs of measuring bandwidth.

e Evaluates intra-node communication on representative high-
performance nodes and interconnects.Describes high-performance
uses of implicit zero-copy and unified memory transfers.

e Provides insights for system designers on how to architect next-
gen hardware and developers on how to orchestrate copies to
optimize applications for current systems.

https://doi.org/10.1145/3297663.3310299
https://doi.org/10.1145/3297663.3310299
https://doi.org/10.1145/3297663.3310299

Alexnet:
GoogleNet
Mobilenet:
Resnet34
Resnet50
ResNext152
VGG11
VGG16:
VGG19

\LLLLLLLL

[20 40 60 80 100

m P2P m H2D m D2H 1 D2D

Figure 1: Percentage of communication time for a single
epoch of network training using MXNet (P: Peer, H: Host, D:
Device). Peer refers to direct memory access between GPUs.
Note that for some networks communication time is domi-
nated by the host-to-device memory copy.

To motivate the need for understanding intra-node communica-
tion performance - consider CUDA unified memory. Conventional
wisdom about CUDA communication does not necessarily hold up
on modern systems with fast interconnects. For example, many de-
velopers are leery of using unified memory due to perception of its
poor performance. While it is slower than the fastest explicit trans-
fers, this work shows that it is actually faster than the traditional
cudaMalloc/cudaMemcpy pair (Section 4). Detailed measurements
also show that zero-copy memory may be the preferable way to
move data between GPUs, and that cudaMalloc/cudaMemcpy is
limited by single-threaded CPU performance (Section 4). These
findings show that data transfer performance is more than just a
function of the underlying interconnect technology.

Existing works fall short in covering all aspects of GPU com-
munication patterns (Shown in Table 1) or do not measure current
state-of-the-art interconnects. The existing works that measure cur-
rent state-of-the-art interconnects [6, 10, 15, 22, 24, 30] concentrate
on the interplay between peer GPU and inter-node communica-
tion — omitting the host-to-device and device-to-host communi-
cation, which we observe to have a substantial impact in Al and
HPC applications. For example, Figure 1 shows the communica-
tion time breakdown for training a deep neural networks using
the MXNet [14] framework with the sizes of data transfers ranging
from bytes to hundreds of megabytes. As can be seen, there is a mix-
ture of transfer types — with host-to-device transfers potentially
taking a substantial amount of the communication time.

The paper is organized as follows: Section 2 motivates Comm|Scope
and describes the common pitfalls of benchmarking GPU commu-
nication. Section 3 describes the microbenchmarks in Comm|Scope
and implementation decisions. In Section 4, we evaluate three cur-
rent systems using Comm|Scope and present the observations. Sec-
tion 5 describes related work before we conclude in Section 6 and
present future work in Section 7.

2 DESIGN OBJECTIVES

Comm|Scope’s microbenchmarks are designed to (1) measure the
bandwidth and latency of all CUDA point-to-point bulk transfer
primitives while (2) systematically addressing some common pitfalls
in prior measurements. This section describes these two pillars
of Comm)|Scope design and how those design goals are met. We
hope that these benchmarks will serve as a definitive approach for

Host Allocation ~ Device Allocation Transfer Kind Our [30] [10] [24] [15] [22]

[6]

H2D v
NUMA / pageable cudaMalloc explicit D2H v
bi v
H2D v v v
pageable cudaMalloc explicit D2H v v v
bi v
H2D v v
NUMA / pinned cudaMalloc explicit D2H v v
bi v
H2D v v v v
pinned cudaMalloc explicit D2H v v v v
bi v v
mapped - implicit (zero-copy) H2D v v
PRI D2D v v
- cudaMalloc implicit (zero-copy) DDbi v v
L D2D v v v v v
- cudaMalloc explicit / peer bi v v v v
. D2D v v v v
- cudaMalloc explicit / no peer bi v v
H2D v v
D2H v v
cudaMallocManaged demand page migration H/Dbi v
D2D v
D/Dbi v
H2D v
D2H v
cudaMallocManaged prefetch H/Dbi v
D2D v
D/Dbi v

Table 1: Comm|Scope data transfer microbenchmark cov-
erage, and summary of where related work overlaps.
Comm|Scope defines bandwidth benchmarks for all unidi-
rectional and bidirectional primitive CUDA point-to-point
transfers.

measuring point-to-point primitive transfers in CUDA systems and
serve as a foundation for other CUDA measurement tools.

2.1 Comprehensive Communication Coverage

The first pillar of Comm|Scope design is to provide comprehensive
coverage of CUDA communication primitives. Previous works pro-
vide fragmented and incomplete coverage of CUDA communication
performance (Table 1), and do not measure prefetch performance
of unified memory or NUMA-aware pageable explicit transfers.
This section describes the principles Comm|Scope uses to cover all
point-to-point CUDA communication paradigms.

2.1.1 Unidirectional Operations. Comm|Scope provides microbench-
marks for unidirectional operations. When asynchronous opera-
tions exist, elapsed time is measured using CUDA events to avoid
introducing additional synchronization costs. When operations are
synchronous with the host (as in unified memory or zero-copy
transfers involving the host), the host wall-clock time is used to
measure events.

2.1.2 Bidirectional Operations. Comm|Scope uses multiple simul-
taneous independent asynchronous unidirectional transfers to mea-
sure aggregate bidirectional transfer performance. Independent
operations are queued in separate CUDA streams. To time these
independent operations, a pair of CUDA events is created for each
operation in each stream. The measured time is between the be-
ginning of the first operation to the end of the last operation. This
avoids introducing additional synchronization between operations.
When streams must be associated with separate devices, CUDA
events cannot be synchronized across devices. In this circumstance,

an unavoidable synchronization to ensure the operation is complete
gets included in the elapsed time. As shown in Table 1, prior works
frequently fail to measure bidirectional transfer bandwidth.

2.1.3 NUMA Pinning. Comm|Scope measures the NUMA effect on
multi-GPU and multi-CPU systems through libnuma [31]. When
NUMA control is not utilized on NUMA systems, there can be
extreme variability in the measured performance depending on
how data is placed on the underlying system. Some prior works [10,
15, 22] that evaluate CPU/GPU transfers do not address NUMA
effects on bandwidth.

2.14 Peer Access. Comm|Scope defines GPU-to-GPU transfer bench-
marks between GPUs that support peer access. As host transfers
implicitly exist when peer access is not available, Comm|Scope
also defines GPU-to-GPU transfer benchmarks with peer access
explicitly disabled, and with NUMA pinning, even though no host
allocation is explicitly performed. Peer access allows CUDA GPUs
to directly access each others’ memory without involving the CPU.
When peer access is not available, device-to-device transfers implic-
itly involve host memory: a non-peer GPU-to-GPU transfer must
first pass the data to the host, which then passes it to the destina-
tion GPU. This is managed transparently by the CUDA software
stack, so no host memory is exposed to the user and the benchmark
cannot flush any cached host memory. Comm|Scope defines GPU-
to-GPU transfer benchmarks between GPUs with and without peer
access support.

2.1.5 CUDA Zero-copy. Comm|Scope’s benchmarks define zero-
copy operations(Section 3.3) that are analogous to the CUDA ex-
plicit bulk transfers. CUDA includes a unified address space, where
the host and device can access data through the same pointer. In the
zero-copy paradigm, pinned allocations on the host can be mapped
into this address space and directly accessed from device kernels.
Likewise, data allocated on one device may be directly accessed
from another device. These accesses are served over the device in-
terconnects without any explicit control from the programmer. The
performance of zero-copy transfers depends on the degree of paral-
lelism, the access pattern, and the interconnect speed. Comm|Scope
enables study of zero-copy performance.

2.1.6 CUDA Unified Memory. Like the zero-copy paradigm, CUDA
Unified Memory [18] allows allocations to be used on both the host
and device without any explicit transfers. Using unified memory re-
quires no “boilerplate” code to transfer data back and forth between
the CPU and GPU, or between GPUs - it guarantees a coherent view
of data across all participating system components. Unified memory
also provides automatic communication/computation overlap, as
a GPU thread waiting on unified memory data can be suspended
while other GPU threads are executed. Finally, unified memory can
allow system atomics between the CPU and GPU when supported.

In unified memory, each page has a “home” location. The home
location of the page is dynamically controlled by CUDA based on
which devices access it most frequently, thereby allowing those
accesses to usually be served from the device memory instead of
over the interconnect. A full examination of unified memory data
accesses depends on the underlying hardware, system software,
CUDA driver hints, access pattern, degree of CPU/GPU memory
system integration, and parallelism, and is not covered in this work.

Comm|Scope defines a focused set of unified memory benchmarks
that measure the speed of page migration for regions of various
sizes between devices. This migration scenario is analogous to the
bulk migrations that occur though the explicit data-transfer primi-
tives. These page migrations can be caused on-demand when the
CUDA system determines that the home location of the page should
change, or following a hint from the application. Comm|Scope mea-
sures both scenarios (Section 3.4). The measured bandwidth may
include the cost of page faults, control signals, and the actual data
movement, but should accurately reflect the application-visible data
movement performance.

2.2 Common Pitfalls

The second pillar of Comm|Scope design is to avoid measurement
pitfalls present in prior CUDA communication benchmarks as well
as the ad-hoc communication measurements made during applica-
tion design.

2.2.1 Synchronous Operations. Some prior works [15] measure
CUDA data transfer performance by using host ! wall-clock time
with synchronous CUDA operations, or asynchronous CUDA oper-
ations followed by cudaDeviceSynchronize. They end up incor-
rectly including two unknown times in their measurement: the time
between the function call and the start of the operation, and the
time between the end of the operation and the end of the synchro-
nization with the host.

Wherever possible, Comm|Scope measures the time of asynchro-
nous CUDA operations without introducing additional synchro-
nization. In this context, “asynchronous” means operations that
are asynchronous with respect to the host. An example of such
an operation is cudaMemcpyAsync, which invokes a data transfer,
but may return before that transfer is complete. Such operations
cannot be timed directly by recording the wall time on the host
before and after the call, as the underlying operation may begin
and end arbitrarily long after the function is called and returns.
Comm|Scope wraps asynchronous operations in CUDA events, and
uses the cudaEventGetElapsedTime to measure the time of the
operation as closely as possible without measuring the cost of syn-
chronization. CUDA events are associated with a stream and device,
and events associated with separate devices cannot be directly com-
pared. When asynchronous operations occur on separate devices,
a full synchronization with the host is required during the timing
measurement.

2.2.2 Performance Variation. Even when background operations
are minimized, repeated measurements will show some variation.
Comm|Scope automatically provides statistical summaries of re-
peated runs, and this work reports the standard deviation over 5
repeated runs of each set of benchmark iterations as error bars in
the figures (box-whisker chart). No prior microbenchmarking work
in this area reports any variability across runs.

! This work sometimes uses CUDA terminology of “host” and “device”. The CUDA
host is the processing and memory components of the system that are not part of the
GPU, i.e. the CPU and CPU memory hierarchy. The CUDA devices are the GPUs and
GPU memory.

AC922 Pinned-to-GPU Bandwidth AC922 Pinned-to-GPU Bandwidth

®

—F Local GPU
—F— Remote GPU

—F Local GPU
—fF Remote GPU

o
S
Y
o

Transfer Bandwidth (GB/s)
~ N
S S S
Transfer Bandwidth (GB/s)
&
S

N
)

o
o

210 1 I8 222 226 30 34 210 o1 218 22 2 30 4
Transfer Size (B) Transfer Size (B)

(a) No Flush

AC922 Pageable-to-GPU Bandwidth

—F— Local GPU
—F— Remote GPU

(b) Flush

o AC922 Pageable-to-GPU Bandwidth

—F— Local GPU
—F— Remote GPU

o
S
Y
o

f&_(/—__

210 1 I8 222 26 30 34 210 14 218 22 2 30
Transfer Size (B) Transfer Size (B)

Transfer Bandwidth (GB/s)
~N IS
S S 3
Transfer Bandwidth (GB/s)
IS
S

~N
o

o

o

(c) No Flush (d) Flush

Figure 2: Effect of cache flushing on transfer bandwidth. Fig-
ures 2a demonstrate CPU caches introduce complexity and
irregular performance into the transfer. This is caused by
interaction between higher bandwidth caches and the data
transfer. For example, Figure 2c shows a peak at transfer
sizes that fit in the CPU cache, as this transfer involves an
intra-CPU copy (Section 4.1). Figures 2b and 2d show how
how flushing the CPU caches during benchmark iterations
strongly influence some results.

2.2.3 Variable CPU Clock Speeds. Many systems feature dynamic
CPU frequency adaptation to conserve power and boost perfor-
mance for transient tasks. This presents a challenge when measur-
ing performance, as CPU frequency may not be the same from run
to run. In the context of this work, the CPU performance could have
a substantial impact on performance of the CUDA unified mem-
ory system and CUDA driver operations. On Linux, Comm|Scope
automatically reports when the CPU performance governor is not
locked in the high-performance state, allowing the user to act ap-
propriately before measuring performance. Results in this report
use the Linux “performance” CPU governor, which locks all CPUs
at their highest sustainable frequencies.

cpupower frequency-set --governor performance

Prior works make no report of whether or how this variable is
controlled.

2.24 CPU Data Caching. CPU caches have a measurable effect on
CPU/GPU data transfer performance. For example, Figure 2 shows
the effect of flushing CPU cache lines prior to CPU-to-GPU trans-
fers. Comm|Scope uses dcbf [20, p. 773] on POWER and c1flush [7,
p- 139] on AMD64 to control this effect. These instructions invali-
date and flush the cache lines associated with a particular virtual
address from all CPU data transfers. By looping over all addresses
in a host buffer, Comm|Scope can ensure that no CPU holds an
part of that buffer in any cache. This is done in some benchmarks

before the transfer is initiated. Prior works that measure CPU/GPU
transfers do not address this consideration.

3 IMPLEMENTATION

This section describes the implementation decisions made in the
microbenchmarks. The full code is available at scope.c3sr.com.

3.1 Benchmark Commonalities

The benchmarks are written to have an initialization phase, fol-
lowed by one or more iteration phases, followed by a finalization
phase.

In the initialization phase, CUDA streams and events are cre-
ated, memory is allocated, and memory is initialized. If a CPU is
involved in the benchmark, libnuma is used to bind the process
and allocations to the desired NUMA node. When GPUs are in-
volved, cudaSetDevice is used to control the active device. These
bindings may be modified several times during the benchmark as
desired to ensure operations and allocations occur in the correct
places. Host allocations are performed with aligned_alloc and
sysconf (_SC_PAGESIZE) to align them to host page boundaries.
Device allocations are produced with cudaMalloc. Unified memory
allocations are performed with cudaMallocManaged. Allocations
are initialized with memset or cudaMemset to ensure they have
backing physical pages.

In the iteration phases, the operation to be measured is invoked.
The active CUDA device may be modified as needed to determine
which devices are executing the workloads. The iteration phases are
executed until the cumulative operation time reaches one second.
All benchmarks share the pattern of moving data across one or more
interconnects from a source component to a destination component.

In the finalization phase, the resources used during the execution
of the benchmark are released, so that successive benchmark runs
do not leak resources.

3.2 Explicit Point-to-point Transfer
Benchmarks

Comm|Scope defines unidirectional and bidirectional host/device
and device/device data transfer benchmarks. When supported, GPU-
GPU transfer benchmarks are defined with peer access enabled and
disabled.

e initialization: Host and device allocations are created and initial-
ized. Pinned host allocations are produced with cudaHostRegister.
A “start” and “stop” event are created for each transfer. A CUDA
stream is created for each transfer. Optionally, peer access is
enabled between participating GPUs.

iterations: The benchmark optionally flushes CPU caches (Sec-

tion 2.2.4). For each operation, the start event is recorded, cudaMemcpyAsync

is triggered, and the stop event is recorded. The benchmark iter-
ation time is set to be the elapsed time between events.

3.3 Zero-copy Transfer Benchmarks

Comm|Scope defines unidirectional host/device and device/device
zero-copy benchmarks, as well as bidirectional device-device zero-
copy benchmarks. Each data transfer benchmark can either be a

“read” or a “write” operation. For a read, the destination device reads

scope.c3sr.com

data from an allocation on the source. For a write, the source device
writes data to the destination. Since the host cannot modify data
on the device through the zero-copy paradigm, only unidirectional
host/device benchmarks are defined.

e initialization: Host and device allocations of the desired size are
created and initialized. Host allocations are mapped to the device

1 E ﬁ(I
[Gru GPU |

— NVLink 2.0 50GB/s

--- X-BUS 64GB/s

address space with cudaHostRegister and cudaHostRegisterMapped.

Peer access is enabled between devices for GPU/GPU transfers.

e jterations: If a CPU is involved, the caches are flushed. For a
“read” operation, the destination device is made active or for a
write operation, the source device is made active. A grid of 256
blocks of 256 threads on the GPU iterates over the allocation,
using consecutive threads to make a 4-byte read or write to
consecutive elements of the allocation. For duplex transfers, one
of these workloads is asynchronously executed on each device.
For single GPU workloads, CUDA events are used to measure
the time. For simultaneous GPU workloads, the host wall-clock
time is used.

3.4 Unified Memory

Comm)|Scope defines unidirectional host/device and device/device
unified memory benchmarks. These benchmarks measure band-
width during demand and prefetch page migrations. To generate
demand page migrations, a “write” workload is defined. On the
CPU, this workload writes a single 0-byte to the first byte of each
page. This causes the page to migrate to the CPU while doing the
minimal amount of work. Comm|Scope uses multiple CPU threads
to generate sufficient pressure on the unified memory system. The
allocation is evenly partitioned, and each CPU thread does this
to its respective partition. On the GPU, a fixed grid of 256 blocks
of 256 threads iterates across the allocation. Each warp writes a
single 0-byte in a page before striding the size of the grid to the
next page. This causes the page to migrate to the GPU while doing
the minimal amount of other work.

e initialization: A unified memory allocation is created for each
transfer. Allocations are initialized with cudaMemset. A “start”
and “stop” event are created for each transfer. A CUDA stream is
created for each transfer.

e iterations: cudaMemPrefetchAsync is used to ensure the backing
pages are on the source device of each transfer. Then, the write
workload is executed on the destination device of each transfer.
For transfers involving a single GPU executing a workload, CUDA
events are used to time the iteration. For transfers involving
data migrating to the CPU, the host wall-clock time is used. For
bidirectional GPU/GPU transfers, host wall-clock time is used as
events on separate devices cannot be meaningfully compared.

The prefetch benchmarks are the same as the demand migration
benchmarks, except with no “write” workload. Instead, we use
cudaMemPrefetchAsync to move pages from the source device to
the destination device, which is followed by the measured operation.

4 RESULTS

Comm|Scope is used to evaluate data-transfer performance on three
systems that represent modern heterogeneous computing platforms.
These systems feature the types of CPUs, GPUs and interconnect

Figure 3: IBM AC922 interconnect schematic annotated with
theoretical peak bidirectional transfer rates.

[Gpu GPU |

--- X-BUS 38.4GB/s —— NVLink 1.0 40GB/s

Figure 4: IBM S822LC interconnect schematic annotated
with theoretical peak bidirectional transfer rates.

technologies that run neural-network, machine learning, and data-
driven workloads. Table 2 summarizes the evaluation systems.

e The IBM AC922 3885-GTG [12], whose topology is shown in Fig-
ure 3, features two IBM POWERY9 CPUs and four Nvidia V100 [4]
GPUs. The system is organized into two triads comprising one
CPU and two GPUs. Each triad is fully-connected with a three-
lane NVLink 2.0 interconnect, offering up to 150GB/s of bidirec-
tional bandwidth. The CPUs in the two triads are connected with
an x-bus that offers 64GB/s of bidirectional bandwidth.

e The IBM S822LC 8335-GTB [13] is similar to the AC922, except
the CPUs are IBM POWERSs, the GPUs are Nvidia P100s[3], the
intra-triad interconnects are two-lane NVLink 1.0 with 80 GB/s
bidirectional bandwidth, and the x-bus has 38.4 GB/s bidirectional
bandwidth. Figure 4 shows a schematic of the system topology.

e The SuperMicro 4029GP-TVRT [29], whose topology is shown
in Figure 5, is organized into two pentads of one Intel Xeon Gold
6148 CPU and four Nvidia V100 GPUs. The CPUs are connected
to the GPUs in their pentad by PCle 3.0 x16. The GPUs are con-
nected within and across pentads by either one or two lanes of
NVLink 2.0. Not all GPUs are directly connected — communi-
cation between such GPUs must traverse more than one link
and, when communicating to the CPU, through a PCle Switch
(PEX 9765). The CPUs are connected by three lanes of Intel Ultra
Path Interconnect (UPI), with each lane offering 20.8 GB/s of
bidirectional bandwidth.

Comm|Scope uses the Google Benchmark v1.4.0 library [17] to
manage the benchmark runs. Each measured operation is repeated
one or mote times, with a constraint that it must be executed for at
least one iteration and takes at least one second. Comm|Scope auto-
matically computes the standard deviation over repeated executions.
The results plots in this work use error bars at each measurement
point to represent the standard deviation of five executions.

Comm|Scope has 27 microbenchmarks to cover various CUDA
transfer types. Table 1 summarizes the included configurations.
The rest of this section highlights a selection of results on the

Model CPU GPU CPU-CPU CPU-GPU GPU-GPU Kernel CUDA Driver Page Size
AC922 8335-GTH [12] 2x IBM POWER9 4x V100 (32GB) x-bus (64 GB/s) NVLink 2.0 x3 4.15.0 9.2 396.26 64K
S822LC 8335-GTB [13] 2x IBM POWERS 4x P100 x-bus (38.4 GB/s) NVLink 1.0 x2 4.4.0 9.2 396.26 64K
4029GP-TVRT [29] 2x Intel Xeon Gold 6148 8x V100 (16GB) 3x UPI (62.4 GB/s) PCle 3.0 NVLink 2.0 x1/x2 4.15.0 9.1 396.26 4K

Table 2: Summary of Evaluation Systems.

X

GPU GPU |}===1

== PCle x16 31.6GB/s == NVLink 2.0 50GB/s = = UPI 20.8GB/s

Figure 5: SuperMicro 4029GP-TVRT interconnect schematic
annotated with theoretical peak bidirectional transfer rates.

evaluated systems as they relate to high-performance interconnects
on modern systems. For more raw results on more systems, please
refer to scope.c3sr.com.

4.1 Pageable Host Allocations and Fast
Interconnects

Explicit transfers between pageable host allocations (e.g. those
produced with new, malloc, or aligned_alloc) and the device
through cudaMemcpyAsync achieve low bandwidth relative to the
advertised link capabilities. Figures 6a, 6b, and 6¢ show the overall
transfer rate on the evaluation systems. These transfers involve two
phases. The CUDA system first copies data from the user-visible
pageable allocation to a driver-managed pinned buffer that is not
visible to the user (Figures 6b, 6e, 6h), which happens at a relatively
slow rate allowed by a single CPU thread moving memory. Then, a
DMA is invoked for the GPU to access the data from the internal
pinned buffer (Figure 6c, 6f, 61). The existence of this intermediate
pinned buffer is necessary because the pages must be guaranteed to
be in memory during the DMA from the GPU. The DMA transfers
data at a rate closer to the theoretical interconnect bandwidth. For
example, Figure 6c shows that local pinned-to-GPU transfers on
AC922 achieve nearly the theoretical 80GB/s, while remote transfers
get up to 40 GB/s over the 64GB/s x-bus.

On the IBM systems with NVLink between the CPUs and GPUs,
the pageable-to-GPU transfer rate does not exceed the pageable-
to-pinned transfer rate, even though the pinned-to-GPU transfer
rate is always higher. This suggests that the intra-CPU copy limits
the performance, which is substantially slower than how fast the
data can be moved to the device over the interconnect, even on the
relatively low-speed PCle 3.0 interconnect on the 4029GP.

Bidirectional transfers involving pageable host allocations are
further limited. Comm|Scope bidirectional transfers comprise two
simultaneous host/device transfers in opposite directions between

the same pair of components. Each of those individual pageable-to-
GPU transfer has the same performance limitations described above,
and additionally, the CUDA system does not allow two simultane-
ous pageable-to-pinned copies. Though the device-device DMA may
occur simultaneously, any required host-host copies are serialized.
Figure 7 highlights the consequences of this effect. Pinned/device
bidirectional transfers achieve roughly double the bandwidth of uni-
directional transfers of the same kind (as the two transfers are fully
overlapped). This allows these duplex transfers to nearly saturate
the interconnects. Pageable/device bidirectional transfers are only
slightly faster than unidirectional transfers. They are not meaning-
fully overlapped, as the performance-limiting pageable-to-pinned
copies are serialized.

4.2 High Bandwidth Systems Exhibit Strong
Locality Effects

In device/device transfers and host/device transfers with pinned
host allocations, transfer performance is not limited by a slow
pageable-to-pinned copy and underlying interconnect performance
becomes a dominant effect. On the IBM platforms, all pairs of de-
vices are connected by a relatively high-speed interconnect: two-
lane NVLink 1.0 at 80 GB/s, three-lane NVLink 2.0 at 150 GB/s, or
X-bus at 38.4 GB/s or 64 GB/s. Transfers between directly-connected
devices traverse a fast NVLink, but “remote” transfers always cross
at least one of the slower X-bus links. Figures 6c, 6f, and 6i show
pinned-to-GPU bandwidth with local and remote components. On
AC922, where the NVLink bandwidth is substantially higher than
the X-bus bandwidth, there is a large difference in achieved perfor-
mance between local and remote components. For example, pinned-
to-GPU transfers can utilize up to 72 GB/s (or 95% of the theoretical
peak 75 GB/s unidirectional three-lane NVLink 2.0) for local trans-
fers, but are limited to 41 GB/s for a remote transfer over the X-bus.
On S822LC, the X-bus bandwidth is comparable to the NVLink
bandwidth, and on 4029GP, the UPI bandwidth between CPUs is
actually higher than the PCle 3.0 bandwidth between CPUs and
GPUs, so neither of those systems show a strong locality effect.
Similar locality effects are seen for GPU-GPU transfers (Figure 8).

Unlike CPU-GPU, GPU-GPU locality effects are particularly com-
plicated on the 4029GP. Pairs of GPUs may be connected through
one-lane (50 GB/s bidirectional) or two-lane (100GB/s bidirectional)
NVLink 2.0. Remote GPU pairs always have at least one of the
slower one-lane NVLink 2.0 interconnects between them. Figure 8e
shows the four distinct transfer patterns: GPU0-to-GPU1 (“17), over
a single NVLink lane, GPU0-GPU2 (“2”) over a single NVLink 1.0,
or two hops of two lane NVLink, GPU0-GPU3/4 over a two-lane
NVLink, and GPU0-GPU5/6/7 (“‘5,6,7”) over NVLink x2 followed
by NVLink x1.

scope.c3sr.com

Transfer Size (B)

Transfer Size (B)

g 80 (a) AC922 Pageable-to-GPU (b) AC922 Pageable-to-Pinned (c) AC922 Pinned-to-GPU

G

= —F— Local GPU —F— Local CPU —F— Local GPU

g 601 —F— Remote GPU 1 —}— Remote CPU 1 —F— Remote GPU

T 40 . .

(©

£ 204 1 1

& — o R E————

§ 0 j " Transfer Size (B))) j j " Transfer Size (B))) j j Transfer Size (B) j
=

g 80 (d) S822LC Pageable-to-GPU (e) S822LC Pageable-to-Pinned (f) S822LC Pinned-to-GPU

o

= —F— Local GPU —J— Local CPU —F— Local GPU
g 60 1 —F— Remote GPU 1 —F— Remote CPU] —F— Remote GPU
T 40 1 -

©

CE 20 4 ﬁ 1 ‘/ﬁ—;_ 1

Q& ~

20 T T T T T T T T 7 T T T T T - - - - - - -
© Transfer Size (B) Transfer Size (B) Transfer Size (B)

=

g 80 (g) 4029GP Pageable-to-GPU (h) 4029GP Pageable-to-Pinned (i) 4029GP Pinned-to-GPU

o

= —J— Any GPU —F— Local CPU —J— Any GPU
g 60 1 1 —F— Remote CPU ||]

T 40 . .

(©

2 204 1 1

Q@

I e e T T T B P S T B P S T L
=

Transfer Size (B)

Figure 6: Bandwidth measurements for pageable-to-GPU transfers. (a,d,g) show the achievable transfer bandwidth from page-
able host allocation to local (directly-connected) and remote (multiple-hop) GPUs on the three systems. Each of these transfers
involves a pageable-allocation to pinned-allocation copy (b,e,h) and a pinned-allocation to GPU transfer (c,f,i) on the same sys-

tems.
2125 (a) AC922 Pageable/GPU (b) AC922 Pinned/GPU
@
g —+- Local GPU —F— Local GPU
£1° —I— Remote GPU —I— Remote GPU
75
2
5 so
3 25
3
z
c 0 - _
Lo Transfer Size (B) Transfer Size (B)
T 158 (c) S822LC Pageable/GPU (d) S822LC Pinned/GPU
@
g —— Local GPU —— Local GPU
E] 100 —F— Remote GPU T Remote GPU
s 75
2
5 so
3 25
3
z
5 o0 _ -
Lo Transfer Size (B) Transfer Size (B)
@ 125 (e) 4029GP Pageable/GPU (f) 4029GP Pinned/GPU
@
: = AnyGRU = AnyGPU
= 100
3
75
2
5 so
3 25
3
z
g 0
£

210 ol 2 226 230 34 210 ola I8 g2 26 30 34

Transfer Size (B) Transfer Size (B)

Figure 7: Bidirectional cudaMemcpyAsync bandwidth measure-

ments on the evaluation systems. Pageable and pinned refer
to the host allocation style for the overlapping transfers.

4.3 High Bandwidth Links need Peer Access

Peer access allows a GPU to access memory present on another
GPU without involving the CPU. Whether or not the CPU-GPU
interconnect is fast, peer access is crucial for making full use of the
interconnects. On some platforms, not all pairs of GPUs support

(a) AC922 Peer

—F Local GPU
601 —— Remote GPU

(b) AC922 No Peer

—F— Local to Local
—F— Local to Remote
—f— Remote to Remote

80

40

201

Transfer Bandwidth (GB/s)

Transfer Size (B)
(c) S822LC Peer
—3J— Local GPU

Transfer Size (B)

(d) S822LC No Peer
80

—F— Local to Local
—F— Local to Remote
—f— Remote to Remote

60 1

40

201

Transfer Bandwidth (GB/s)

Transfer Size (B)
(e) 4029GP Peer

Transfer Size (B)
(f) 4029GP No Peer

80

—F GPUs3.4 —F— Different CPU
601 —F— GPU2 —J— Same CPU, Different Switch
- GPU1 ~f~ Same CPU, Same Switch
407 GPUs 5,6,7

201

Transfer Bandwidth (GB/s)

210 ola pl8 g2 26 30 34 210 1 Q18 222 26 30 34

Transfer Size (B) Transfer Size (B)

Figure 8: Unidirectional GPU-GPU cudaMemcpyAsync band-
width measurements on the evaluation systems, with and
without peer access enabled.

peer access. For example, on S822LC, only local GPUs may engage
in peer access. On AC922 and 4029GP, any pair of GPUs may engage
in peer access. Even if peer access is available, it may be selectively
enabled and disabled. When peer access is disabled, Comm|Scope
uses NUMA pinning to involve a fixed CPU in the transfer.

(a) AC922 GPU-to-Pinned

—F Local GPU
601 —F— Remote GPU

(b) AC922 Zero-copy CPU/GPU

—F— Local (Read)
-T+ Remote (Read)
—F— Local (Write)
I+ Remote (write) "
o

80

40

e

20

Transfer Size (B)
(c) S822LC GPU-to-Pinned

—F Local GPU
60 —F- Remote GPU

Transfer Size (B)
(d) S822LC Zero-copy CPU/GPU
—F— Local (Read)
T+ Remote (Read)

—F— Local (Write)
I+ Remote (write)

80

40

20 /:‘—/
Transfer Size (B)

(e) 4029GP GPU-to-Pinned (f) 4029GPU Zero-copy CPU/GPU

—J— Any GPU —f— Any GPU (Write)
60 —F Any GPU (Read)

Transfer Size (B)

80

40

20

Transfer Bandwidth (GB/s) Transfer Bandwidth (GB/s) Transfer Bandwidth (GB/s)

210 gl QI8 2 26 30 3 Q12 216 220 224 228 232
Transfer Size (B) Transfer Size (B)

Figure 9: Explicit GPU-to-CPU (a,c,e) and zero-copy (b,d,f)
bulk transfer bandwidths. “Read” refers to the GPU reading
from host memory, and “write” refers to the GPU writing to
host memory (Section 3.3).

Figure 8 shows GPU/GPU transfers with and without peer access
enabled. For local GPUs, the availability of peer access is neces-
sary to fully utilize the interconnect. When peer access is enabled,
transfer bandwidth increases by around 10 GB/s. S822LC does not
support peer access for remote GPUs. On 4029GP, if peer access
is not enabled, all transfers must go through the relatively slow
PCIe CPU/GPU interconnect, completely limiting the performance
available over NVLink.

4.4 Zero-Copy Memory can match Explicit
Transfers

Figure 9 shows a comparison of zero-copy and explicit transfers.
On AC922, zero-copy bandwidth matches explicit transfers for
intermediate sizes (Figs 6c, 9a, and 9b). On S822LC, the same is true
for GPU-to-pinned transfers (a zero-copy write), but the zero-copy
read is about 10GB/s slower (Figs 6f and 9d). The limited 4029GP
CPU/GPU bandwidth again hides most effects.

When zero-copy bandwidth matches that of explicit transfers, it
may be preferable as it can eliminate boilerplate data-transfer code.
On all systems, the zero-copy bandwidth drops significantly for
extremely large transfers, so explicit transfers may be preferable
in this regime, Moving data with zero-copy also requires kernel
execution, which could take GPU resources away from other uses.

4.5 Unified Memory Demand Page Migration
Bandwidth can be higher than Explicit
Transfers from Pageable Allocations

CUDA unified memory is presented as a programmer-friendly way

to develop CUDA-accelerated applications on current systems. Con-

ventional wisdom is that unified memory is slower than explicit

memory management, though a comparison of Figures 10 and 6

(a) AC922 Host-to-GPU

—J— Local
—f— Remote

(b) AC922 GPU-to-Host

o
)

BN oW a
© o & o

)

Transfer Size (B)

(c) S822LC Host-to-GPU

Transfer Size (B)

(d) S822LC GPU-to-Host

o
)

a

3

)

£

B

2

3

2

H

3

5

@

g

°

g

a

3

iy —— Local | 10

£ 40 —F— Remote 8

5 304 {+6

3 f

5 20 B 4

a -+ 2

& 10 141

g

s 0

= Transfer Size (B) Transfer Size (B)
7., (e) 4029GP Host-to-GPU () 4029GP GPU-to-Host
3

e | —}— Any GPU (Write)] 10

g —— Any GPU (Read) 8

£ 304 {+6

3 f

5 204 B 4

a -+ 2

- SR =
g

c 0

£ 20 o gl g2z % g gk 21 ol 19 ;2 15 g Qi oM

Transfer Size (B) Transfer Size (B)

Figure 10: Unified memory demand CPU/GPU transfers. (a),
(c), (e) show host-to-device transfers. (b), (d), (f) show device-
to-host bandwidth vs. number of requesting host threads for
a directly-connected CPU/GPU pair.

show that unified memory coherence bandwidth can exceed ex-
plicit management and pageable allocations when enough host
or device threads are used. The number of device threads can be
expected to always be sufficient, but more than one host thread is
needed for the GPU-to-host unified memory bandwidth to achieve
its maximum throughput. A single CPU thread is not able to gener-
ate enough memory traffic to saturate the unified memory system
or underlying interconnects.

Since bandwidth is not the only consideration for application
transfer performance (for example, the unified memory system
could cause redundant data transfers not present in an explicitly-
managed system), this does not suggest that translating an appli-
cation to unified memory will necessarily be faster, only that the
raw capability of the unified memory system does not necessarily
imply a slowdown.

4.6 Demand Page Migration Bandwidth does
not Exhibit Strong Locality Effects

Unlike the explicit transfers (Section 4.2), Figure 10 shows that co-
herence bandwidth is not strongly affected by component locality.
Figs. 10a, 10c, and 10e show little different between demand page
migration accesses from directly-connected or multi-hop devices.
This suggests that interconnect bandwidth is not the primary per-
formance limiter (though it clearly has some effect, as 4029GPU ex-
hibits lower bandwidth). The strongest locality effect occurs around
16MB transfers on AC922, which is in the regime of the last-level
cache size. Data in the CPU cache can be accessed much more
quickly than in DRAM, so unified memory bandwidth may be in-
fluenced by CPU memory bandwidth, just as with pageable explicit
transfers.

4.7 Unified Memory Prefetch Bandwidth Slow
at Intermediate Sizes

Unified memory demands page migration provide substantially
lower bandwidth than GPU/GPU or pinned/GPU transfers. Fig-
ure 11 shows that unified memory prefetching using cudaMem
PrefetchAsync can nearly match explicit transfers for large sizes,
and also brings the commensurate dependence on locality. Un-
fortunately, for intermediate transfers of around 4KiB-32MiB, the
bandwidth is substantially lower than explicit transfers at the same
size. For large data, using unified memory for convenience and
dropping back to prefetch hints for bulk transfers remains a viable
path to high-performance data transfer.

5 RELATED WORK

Table 1 shows how prior works have overlapped with the mi-
crobenchmarks in Comm|Scope. Though some of the specific mea-
surements made by Comm|Scope have been made previously, we
believe Comm|Scope represents the most comprehensive cover-
age of CPU-CPU and CPU-GPU point-to-point communication
performance to date.

Li et. al [23, 24] created Tartan, a benchmark suite for evaluating
GPU interconnects in the context of machine-learning workloads.
Tartan includes microbenchmarks for point-to-point and collective
GPU-GPU communication within and across nodes. To that end,
Tartan measures bandwidth, latency, and efficiency of GPU-GPU
explicit memopry copies and the Nvidia Collective Communica-
tions Library (NCCL) on PCle, NVLink 1.0, NVLink 2.0, and Infini-
band systems with GPUDirect RDMA. Unlike Tartan, Comm|Scope
includes CPU/GPU transfers, but only measures point-to-point
transfer bandwidth within a single node. Tartan also includes 14
larger application benchmarks. Those benchmarks are categorized
by what communication pattern they exhibit. Some of those bench-
marks are categorized into the CPU-GPU communication pattern,
but Tartan does not include corresponding CPU-GPU microbench-
marks.

Tallent et. al [30] evaluate the effect of multi-GPU systems on
deep-learning workloads. Along the way, they measure point-to-
point explicit GPU-GPU copy bandwidth with and without peer
access available, which are two of the microbenchmarks included
into Comm|Scope. They also have some GPU/GPU latency and col-
lective communication bandwidth measurements, similar to Tartan.

Ben-nun et al. [9, 10] present Groute and MGBench. Groute is
a multi-GPU programming model, and MGBench was developed
partially to understand multi-GPU communication patterns be-
fore developing Groute. MGBench includes some host/GPU and
GPU/GPU zero-copy benchmarks for coalesced and random ac-
cesses. MGBench includes device synchronization time in their
bandwidth measurements.

The SHOC benchmark suite [15] is meant to measure the per-
formance of hetoerogeneous systems running OpenCL and CUDA
workloads. SHOC includes unidirectional bandwidth measurements
point-to-point transfers between CPU and GPU.

Landaverde, Zhang, Coskun, and Herbordt [22] investigate the
effect of porting several benchmarks to use CUDA’s unified memory
system on PCle systems. They present microbenchmarks that cor-
respond to the unidirectional host/device coherence measurements

in Comm)|Scope. They also have the corresponding implementation
using explicit point-to-point copies. They do not account for NUMA
topology in their measurements and only consider PCle systems.
Spafford, Meredith, and Vetter [28] measure NUMA and con-
tention in multi-GPU systems. They overlap with Comm|Scope by
measuring point-to-point NUMA-aware CPU/GPU bandwidth on
PCle systems. Though they do not specify, the results suggest that
they are measuring bandwidth from pinned host allocations.
Though the CUDA SDK Samples [6] are not intended as a per-
formance measurement tool, it provides demonstration code that
measures bandwidth between two GPUs with peer access enabled,
bandwidth for duplex pinned/GPU copies, host/device bandwidth
for pageable and pinned allocations as well as device-device band-
width, and bandwidth and latency of unidirectional and bidirec-
tional GPU/GPU transfers with and without peer access available.
None of these samples consider NUMA effects, and there are no
comparable unified memory performance measurement programs.
Pai [5] develops some benchmarks for unified memory in CUDA
6.0. The benchmarks are developed to understand which situa-
tions incur repeated accesses, instead of measuring bandwidth.
Mukherjee et al. [27] describes a microbenchmark that measures
data transfer performance in the HSA 1.0 unified memory system
and the OpenCL 2.0 shared virtual memory. This work includes
similar demand migration bandwidth measurements in CUDA.

6 CONCLUSION

Comm|Scope defines benchmarks with thorough coverage of ex-
plicit point-to-point intra-node CUDA communication methods,
as well as analogous zero-copy and unified memory operations.
Though the explicit transfer methods have existed since the earliest
versions of CUDA, the enormously increased bandwidth provided
by NVLink interconnects throws the significance of system config-
uration into stark relief. Furthermore, the ability of zero-copy mem-
ory and unified memory demand paging as a stand-in for explicit
data transfer is poorly understood. As a whole, these benchmarks
examine all basic data transfer methods and form a foundation
for building more sophisticated communication operations, like
collective operations. Without tools to comprehensively measure
primitive performance, it is difficult to reason about or optimize
more complicated patterns.

Comm|Scope can be used to inform the design of system features
that allow applications to best use fast interconnects, including:

e Large host memories should be provided so that as many pinned
allocations as possible can be used.

e All pairs of GPUs should support peer access.

e The CPU memory subsystem should be as robust as possible to
improve the performance of CUDA unified memory transfers
and explicit transfers involving pageable allocations.

These results suggest some basic approaches for applications:

e Pinned allocations should be used when fast transfers are re-
quired.

e Unified memory demand migrations should only be relied on
with multiple host threads.

e The CPU memory subsystem should be as robust as possible to
improve the performance of CUDA unified memory transfers
and explicit transfers involving pageable allocations.

Transfer Size (B)

Transfer Size (B)

@ g0 (a) AC922 (b) S822LC (c) 4029GP

@ —— Pinned (Local) —— Pinned (Local) —— Pinned (Local)

S 60+ —— Pinned (Remote) 4 —f— Pinned (Remote) 4 —f— Pinned (Remote)

-g -+ Prefetch (Local) -+ Prefetch (Local) -+ Prefetch (Local)

T 401 -] Prefetch (Remote) 1 -+ Prefetch (Remote) 1 -+ Prefetch (Remote)

a

5 20 - . .

© .. L

= 0 210 ola 18 22 2 %0 o4 210 ola 18 22 g2 30 o4 210 ola 18 22 s 30 o3

Transfer Size (B)

Figure 11: CPU-to-GPU pinned and prefetch transfer Bandwidth.

Applications need to be careful about GPU placement for best
communication performance.

These benchmarks also can uncover irregular behavior, such as
drops in zero-copy performance and slower unified memory prefetch
bandwidth at intermediate sizes, which could be an indication of
hardware or system software misconfiguration.

7 FUTURE WORK

Substantial investigation of using unified memory in the context of
various applications has been carried out, both for its programming
simplicity [19, 21] and coordination between CPUs and GPUs [11].
This work frequently identifies challenges in understanding the
underlying behavior of the unified memory system.

Comm|Scope only includes a small slice of the many dimensions
of zero-copy and unified memory performance, which are influ-
enced by parallelism, access pattern, degree of simultaneous access,
CUDA driver hints, system software versions, and the degree of
integration between CPU and GPU memory systems. In the future,
we hope to extend Comm|Scope to measure how these different
dimensions jointly affect those communication paradigms.

ACKNOWLEDGMENTS

This work is supported by IBM-ILLINOIS Center for Cognitive
Computing Systems Research (C3SR) - a research collaboration
as part of the IBM Al Horizon Network. This research is part of
the Blue Waters sustained-petascale computing project, which is
supported by the National Science Foundation award OCI-0725070
and the state of Illinois. Blue Waters is a joint effort of the Univer-
sity of Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications.

REFERENCES

[1] [n.d.]. Sierra Supercomputer. https://computation.llnl.gov/computers/sierra.
Accessed: 2018-10-11.

[n. d.]. Summit Supercomputer. https://www.olcf.ornl.gov/summit/. Accessed:
2018-10-11.

2016. NVIDIA Tesla P100. Technical Report. https://images.nvidia.com/content/
pdf/tesla/whitepaper/pascal-architecture- whitepaper.pdf

2017. NVIDIA Tesla V100 GPU Architecture. Technical Report. http://images.
nvidia.com/content/volta-architecture/pdf/volta-architecture- whitepaper.pdf
2018. Benchmarking unified memory in CUDA 6.0. https://users.ices.utexas.edu/
~sreepai/automem/.

2018. CUDA 9.2 Toolkit Downloads.
cuda-92-download-archive.

Advanced Micro Devices 2018. AMD64 Architecture Programmer’s Manual (3.26
ed.). Advanced Micro Devices.

https://developer.nvidia.com/

=

[8] amazon [n. d.]. Amazon AWS. https://aws.amazon.com. Accessed: 2018-10-11.
[9] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:
An asynchronous multi-GPU programming model for irregular computations. In
ACM SIGPLAN Notices, Vol. 52. ACM, 235-248.

Tal Ben-Nuun. 2017. mgbench. https://github.com/tbennun/mgbench.

Rajesh Bordawekar and Pidad Dasfar D’Souza. 2018. Evaluation of Hybrid Cache-
Coherent Concurrent Hash Table on POWERY System with NVLink 2.
Alexandre B Caldeira. 2018. IBM Power System AC922 Introduction and Technical
Overview (1 ed.). IBM.

Alexandre B Caldeira, Volker Haug, and Scott Vetter. 2016. IBM Power System
S822LC for High Performance Computing Introduction and Technical Overview (1
ed.).

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S Vetter. 2010. The scalable
heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units. ACM,

= =
i)

[12

[13

[14

[15

63-74.

[16] google [n. d.]. Google Cloud Platform. https://cloud.google.com. Accessed:
2018-10-11.

[17] Google. 2018. Benchmark — A microbenchmark support library. https://github.
com/google/benchmark.

[18] Mark Harris. 2013. Unified Memory in CUDA 6. (2013). https://devblogs.nvidia.

com/parallelforall/unified-memory-in-cuda- 6/

Richard Hayden and Oleg Rasskazov. 2018. Juicing up ye old Monte Carlo GPU
code.

IBM 2018. POWER ISA (2.07B ed.). IBM.

Jiri Kraus. 2016. High Performance and Productivity with Unified Memory and
OpenACC: A LBM Case Study.

Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin Herbordt.
2014. An investigation of unified memory access performance in CUDA. In High
Performance Extreme Computing Conference (HPEC), 2014 IEEE. IEEE, 1-6.

Ang Li. 2018. Tartan. https://github.com/uuudown/Tartan.

Ang Li, Shuaiwen Leon Song, Jieyang Cheng, Xu Liu, Nathan Tallent, and Kevin
Barker. 2017. Tartan: Evaluating Modern GPU Interconnect via a Multi-GPU
Benchmark Suite. In International Symposium on Workload Characterization,
IEEE.

Celso L Mendes, Brett Bode, Gregory H Bauer, Jeremy Enos, Cristina Beldica, and
William T Kramer. 2014. Deploying a large petascale system: The blue waters
experience. Procedia Computer Science 29 (2014), 198-209.

microsoft [n. d.]. Microsoft Azure Cloud Platform. https://azure.microsoft.com.
Accessed: 2018-10-11.

Saoni Mukherjee, Yifan Sun, Paul Blinzer, Amir Kavyan Ziabari, and David
Kaeli. 2016. A comprehensive performance analysis of HSA and OpenCL 2.0. In
Performance Analysis of Systems and Software (ISPASS), 2016 IEEE International
Symposium on. IEEE, 183-193.

Kyle Spafford, Jeremy S Meredith, and Jeffrey S Vetter. 2011. Quantifying NUMA
and contention effects in multi-GPU systems. In Proceedings of the Fourth Work-
shop on General Purpose Processing on Graphics Processing Units. ACM, 11.
SuperMicro 2018. SuperServer 4029GP-TVRT (1 ed.). SuperMicro.

Nathan R Tallent, Nitin A Gawande, Charles Siegel, Abhinav Vishnu, and Adolfy
Hoisie. 2017. Evaluating On-Node GPU Interconnects for Deep Learning Work-
loads. In International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems. Springer, 3-21.

Cliff Wickman, Christoph Lameter, and Lee Schermerhorn. 2015. numactl v2.0.11.
https://github.com/numactl/numactl.

https://computation.llnl.gov/computers/sierra
https://www.olcf.ornl.gov/summit/
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://users.ices.utexas.edu/~sreepai/automem/
https://users.ices.utexas.edu/~sreepai/automem/
https://developer.nvidia.com/cuda-92-download-archive
https://developer.nvidia.com/cuda-92-download-archive
https://aws.amazon.com
https://github.com/tbennun/mgbench
https://cloud.google.com
https://github.com/google/benchmark
https://github.com/google/benchmark
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://github.com/uuudown/Tartan
https://azure.microsoft.com
https://github.com/numactl/numactl

	Abstract
	1 Introduction
	2 Design Objectives
	2.1 Comprehensive Communication Coverage
	2.2 Common Pitfalls

	3 Implementation
	3.1 Benchmark Commonalities
	3.2 Explicit Point-to-point Transfer Benchmarks
	3.3 Zero-copy Transfer Benchmarks
	3.4 Unified Memory

	4 Results
	4.1 Pageable Host Allocations and Fast Interconnects
	4.2 High Bandwidth Systems Exhibit Strong Locality Effects
	4.3 High Bandwidth Links need Peer Access
	4.4 Zero-Copy Memory can match Explicit Transfers
	4.5 Unified Memory Demand Page Migration Bandwidth can be higher than Explicit Transfers from Pageable Allocations
	4.6 Demand Page Migration Bandwidth does not Exhibit Strong Locality Effects
	4.7 Unified Memory Prefetch Bandwidth Slow at Intermediate Sizes

	5 Related Work
	6 Conclusion
	7 Future Work
	Acknowledgments
	References

