DLBricks: Composable Benchmark
Generation to Reduce Deep Learning
Benchmarking Effort on CPUs

Cheng Li!, Abdul Dakkak?, Jinjun Xiong?, Wen-mei Hwu?
University of Illinois Urbana-Champaign?!, IBM Research?

ICPE2020

Background

" Deep Learning (DL) models are used in many application domains
" Benchmarking is a key step to understand their performance

" The current benchmarking practice has a few limitations that are
exacerbated by the fast-evolving pace of DL models

Limitations of Current DL Benchmarking

= Developing, maintaining, and
running benchmarks takes a

non-trivial amount of effort g 20| M Benchmarks M DL Papers O s
. E 15} Al I\/’atrix 120256 g’_
— Benchmark suites select a small 5 | Jas0s &
< ® —Fathom ®- —
subset (or one) out of tensor & 5 °°T o —DawBonch | wipet-s 6752
R m
even hundreds of candidate 1 ol | , .
2016 2017 2018 2019
models Year

— It is hard for DL benchmark suites
to be agile and representative of
real-world model usage

Limitations of Current DL Benchmarking

= Benchmarking development and characterization can take a long time
" Proprietary models are not represented within benchmark suites

— Benchmarking proprietary models on a vendor’s system is cumbersome
— The research community cannot collaborate to optimize these models

o0 .
0000000000000 ¢ ¢ gn
0000000 :

Slow down the adoption of DL innovations

DLBricks

" Reduces the effort to develop, maintain, and run DL benchmarks
" |s a composable benchmark generation design

— Given a set of DL models, DLBricks parses them into a set of unique layer
sequences based on the user-specified benchmark granularity (G)

— DLBricks uses two key observations to generate a representative
benchmark suite, minimize the time to benchmark, and estimate a
model’s performance from layer sequences

Key Observation 1

" DL layers are the performance building blocks of the model
performance

— A DL model is graph where each vertex is a layer (or operator) and an
edge represents data transfer

— Data-independent layers can be run in parallel

(a) VGG1l6 (ID=17).

(b) Inception V3 (ID=9).

Model architectures where the critical path are highlighted

D Name Task LI:;: s

1 Ademxapp Model A Trained on ImageNet Competition Data IC 142

e 2 Age Estimation VGG-16 Trained on IMDB-WIKI and Looking at People Data IC 40

3 Age Estimation VGG-16 Trained on IMDB-WIKI Data IC 40

E 4 CapsNet Trained on MNIST Data IC 53
5 Gender Prediction VGG-16 Trained on IMDB-WIKI Data IC 40

6 Inception V1 Trained on Extended Salient Object Subitizing Data IC 147

7 Inception V1 Trained on ImageNet Competition Data IC 147

8 Inception V1 Trained on Places365 Data IC 147

9 Inception V3 Trained on ImageNet Competition Data IC 311

10 MobileNet V2 Trained on ImageNet Competition Data IC 153

. W 11 ResNet-101 Trained on ImageNet Competition Data 1C 347
e u S e e I I I O e S a re p re S e n 12 ResNet-101 Trained on YFCC100m Geotagged Data IC 344

13 ResNet-152 Trained on ImageNet Competition Data IC 517

14 ResNet-50 Trained on ImageNet Competition Data IC 177

15 Squeeze-and-Excitation Net Trained on ImageNet Competition Data 1C 874
5 t e S O f D L t a S k S a n d r u n t h e m O n 4 16 SqueezeNet V1.1 Trained on ImageNet Competition Data IC 69
17 VGG-16 Trained on ImageNet Competition Data IC 40
18 VGG-19 Trained on ImageNet Competition Data IC 46
19 Wide ResNet-50-2 Trained on ImageNet Competition Data IC 176

20 Wolfram Imageldentify Net V1 IC 232
SyS e I I l S 21_ Yahoo OpenNSFWModel V1 _ _ _ _ _ _ ___ __ __ ________________ e __1m,

22 AdalN-Style Trained on MS-COCO and Painter by Numbers Data P
23 Colorful Image Colorization Trained on ImageNet Competition Data iy
24 ColorNet Image Colorization Trained on ImageNet Competition Data P
25 ColorNet Image Colorization Trained on Places Data P
26 CycleGAN Apple-to-Orange Translation Trained on ImageNet Competition Data P
27 CycleGAN Horse-to-Zebra Translation Trained on ImageNet Competition Data P
28 CycleGAN Monet-to-Photo Translation iy
29 CycleGAN Orange-to-Apple Translation Trained on ImageNet Competition Data P
30 CycleGAN Photo-to-Cezanne Translation P 96
i3
i3
P
ig
i3
i3
P
g

31 CycleGAN Photo-to-Monet Translation

Instance CPUS Memory (GiB) $/hr 32 CycleGAN Photo-to-Van Gogh Translation

33 CycleGAN Summer-to-Winter Translation

. 34 CycleGAN Winter-to-Summer Translation 94
C 5 « X l ar ge 4 Intel Platlnum 8 124M 8GB 0. 17 35 CycleGAN Zebra-to-Horse Translation Trained on ImageNet Competition Data 94
36 Pix2pix Photo-to-Street-Map Translation 56

C 5 . 2 X l ar ge 8 Intel Platmum 8 124M 16GB 0.34 37 Pix2pix Street-Map-to-Photo Translation

38 Very Deep Net for Super-Resolution

cd.xlarge 4 Intel Xeon E5-2666 v3 7.5GB 0.199 39" SSD-VGG-300 Trained on PASCALVOC Data 7 7C oD 15

40 SSD-VGG-512 Trained on MS-COCO Data oD 157

cd.2xlar ge 8 Intel Xeon E5-2666 v3 15GB 0.398 41 YOLO V2 Trained on MS-COCO Data oD 106
42 2D Face Alignment Net Trained on 300W Large Pose Data RG 967

43 3D Face Alignment Net Trained on 300W Large Pose Data RG 967

- 44 Single-Image Depth Perception Net Trained on Depth in the Wild Data RG 501

Eva I u at ions are p e rfo rme d on t h e 4 Am azon 45 Single-Image Depth Perception Net Trained on NYU Depth V2 and Depth in the Wild Data RG 501

46 Single-Image Depth Perception Net Trained on NYU Depth V2 Data RG 501

: 47 Unguided Volumetric RG Net for 3D Face Reconstruction RG 1029
EC2 systems listed. The systems are ones 5™ Ademsapy Mol A1 Trained on ADESOK Data -~~~ s

. 49 Ademxapp Model A1 Trained on PASCAL VOC2012 and MS-COCO Data SS 141

re co mm e 1] d e d by A m a zo 1] fo r D L | nfe re 1] ce . 50 Multi-scale Context Aggregation Net Trained on CamVid Data SS 53

Models used for evaluation

Key Observation 1

" sequential total layer latency = sum of all layers’ latency

" parallel total layer latency = sum of layer latencies along the
critical path

1.0"I"i'ls"elcibgh{iéll'i"PIa'r'.aII'I'eII"I"

0.8
0.6
0.4
0.2
0.0

Normalized Latency

Model ID

The sequential and parallel total layer latency normalized to the model’s end-to-end latency
using batch size 1 on c5.2xlarge

Key Observation 2

" Layers (considering their layer type, shape, and parameters, but
ignoring the weights) are extensively repeated within and across
DL models

Relu Pooling

o—»*+BN+Jé+P+p»1»2»2)3»4»4»4»5»6»6»6>6>6>7+8+8>p+F+W+3»—0
Convolution BatchNorm Fully Connected Softmax

ResNet50 model architecture

25656+56

Module 2

Module 3

512x28x28

Module 4

Module 5

1024x14x14

Module 6

Module 7

Module 8

ResNet50 modules

Key Observation 2

100
® 80
g 60
c
o 40
= 20
0
FNetLoNEo 2 TN 2 2 AR NER85EB38858335923285923
Model ID
The percentage of unique layers
100 | Aggregation [| BatchNorm [[] Catenate [l Convolution [| Dropout [| Elementwise 7] Norm [Padding [l Replicate [l Threading Il Other

80
60
40

0, | I I I T I I | | II |I|ILIL1¢LLLILI+ILILILILII | |
© o0
-— ™

L L1 1
0 o O NgIT9Y o o
-~ N O 0woOoNoo 2 d0F0 QRINQILLRIAIIBHSG » <

% Repeated Layer Type

| |
A ™
< <

19

,_'_

41_

< 10 © N 0 O O
< T T T T O

Model ID
The type distribution of the repeated layers

DLBricks Design

Benchmark
M,...M)
(M,)) Granularity
(1

= DLBricks explores not only layer level model JoN
composition but also sequence level nggggf;fl Logend:
composition where a layer sequence is a 0 S})
chain of layers

Running Benchmarks

" The benchmark granularity (G) specifies the ({P)
maximum numbers of layers within a layer T
sequence within the generated benchmarks Aépeﬁo*r’nance:

Constructor «»

({P,W PMn}>

MO[J}IOAA UOIBIBUSS) YJewyouag

MO[JMJOAN UOIIONISUOD) SOUBWIOLS] g

DLBricks design and workflow

Benchmark Generation Workflow

Benchmark
M,...M)
(M,)) Granularity
(1

" The user inputs a set of models along with a JoN
target benchmark granularity nggggf;fl Logend:
" The benchmark generator parses the input (&2 S}> ' i
models into a representative (unique) set of Running Benchmarks s g
non-overlapping layer sequences and then ({P T 22 0
generates a set of runnable networks T —~ :
" The runnable networks are evaluated on a %ﬁiﬁiﬁf% 2 f
system of interest to get their performance ({PM@_{PM"}) S e

DLBricks design and workflow

I

Benchmark Generation Workflow

Algorithm 1 The FindModel Subgraphs algorithm.

Input: M (Model), G (Benchmark Granularity)
Output: Models

begin « 0, Models «— {}
verts < TopologicalOrder(ToGraph(M))
while begin < Length(vs) do
end «— Min(begin + G, Length(vs))
sm «— SplitModel(verts, begin, end)
Models « Models + sm [“models”]
begin <« sm[“end”] + 1
end while
return Models

N A Sl > e

Algorithm 2 The SplitModel algorithm.

e A S o S

Input: verts, begin, end
Output: (“models”, “end”)
vs < verts [begin : end]
try

m <« CreateModel(vs) > Creates a valid model

return (“models” — {m},“end” — end)
catch ModelCreateException

m «— {CreateModel({verts [begin]})}

n « SplitModel(verts,begin + 1,end + 1)

return (“models” — m + n[“models™],

“end” — n [“end”])

> Hash table

end try

Performance Construction Workflow

Benchmark
M,...M)
(M,)) Granularity
(1

" The performance constructor queries the JoN
stored benchmark results for the layer nggggf;fl Legens:
sequences within the model

2D

Perfo\r'r}nanceg
Constructor @
({PM1J

" |t then computes the model’s estimated Running Benchmarks .
performances based on the composition (“’) 3
strategy X]

5

MOI|NIOAA UOIIONIISUOD SOUBWIOUDH <

DLBricks design and workflow

Latency (s)

Evaluation

1

0.10

0.01

- N MO T O O~ O
—

[|
< 0 O N~ 00 O O
AN N N AN AN O™

| !
q ™
NN A
Model ID

AN O - IO O~ O O ™ N I WU ©
T - - - - - —~ — AN N O MO MmO m

~— Q
(ep M ep]

+~—
+~—

The end-to-end latency of models in log scale across systems

N~
(s}

(o0}
(s}

(o)}
™

o
<

-—
<

QAl
<

(8]
v

v
v

Ty)
<t

<o}
<t

N~
<

(e0}
<

(®))
<

o
Te)

Evaluation

3 <) 3

510 510 5 10

5 08 5 08 08

g 03 Y g 04

g 0.2 g 02 g 02

£ 00 £ 00 £ 00

z FANTworoo QT NRIRRER2QIRIRERARBSNBIBRERBITYLILEE ISR z FNOTLOro 2T NRIRRER2RIRINERERBSSBIB8ERBTYLILELeS] z FNOTLOroeRTNRIRRRR2RTYRINERRRBSNRIN8ERBITIVILELe2
(a) Benchmark Granularlty (b) Benchmark Granularity=2 (c) Benchmark Granularity=3

5 5 5

g 10 g 10 £ 10

3 o8 28 -

Z 04 % 04 g 04

L6 £ E

2 ruosweoroo 2T N¥RIRRER2RIARINEREARBSNRIBBEBITTILEEe2R 2 ruosnoroo 2T NRIRRER2RNARIRRRARBSIRIBBEBIITILILLEe28 2" FNOTLorooRTRRIRRRR2RINRILENERBSEBIBEHBZITIILCTR?
(d) Benchmark Granularity=4 (e) Benchmark Granularity=5 (f) Benchmark Granulari

The constructed model latency normalized to the model’s end-to-end latency. The benchmark
granularity varies from 1 to 6. Sequence 1 means each benchmark has one layer (layer granularity).

Benchmarking Speedup

= Up to 4.4x benchmarking time
speedup for G =1 on c5.xlarge

Geomean
Normalized Latency

= For all 50 models, the total number
of layers is 10,815, but only 1,529
(i.e. 14%) are unique

= QOverall, G =1is a good choice of i
benchmark granularity configuration 1
for DLBricks given the current DL &

software stack on CPUs

1.10 ¢
1.05}
1.00 }
0.95}
0.90 ¢

- ' O c5.xlarge c5.2xlarge > c4.xlarge [0 c4.2xlarge
2 4 6 8 10
Benchmark Granularity

The geometric mean of the normalized latency
(constructed vs end-to-end latency) with varying

benchmark granularity from 1 to 10.

45
4.0
35}
3.0¢
25¢

O c5.xlarge c5.2xlarge o c4.xlarge [0 c4.2xlarge

2.0

I2I..4...6III8..‘10

Benchmark Granularity

The speedup of total benchmarking time across
systems and benchmark granularities.

Discussion

" Generating non-overlapping layer sequences during benchmark
generation

— Requires a small modification to the algorithms

= Adapting to Framework Evolution

— Requires adjusting DLBricks to take user-specified parallel execution rules

= Exploring DLBricks on Edge and GPU devices

— The core design holds for GPU and edge devices. Future work would
explore the design on these devices

Conclusion

" DLBricks reduces the effort of developing, maintaining, and
running DL benchmarks, and relieves the pressure of selecting
representative DL models.

= DLBricks allows representing proprietary models without model
privacy concerns as the input model’s topology does not appear
in the output benchmark suite, and “fake” or dummy models can
be inserted into the set of input models

Thank you

Cheng Li, Abdul Dakkak?, Jinjun Xiong?, Wen-mei Hwu'

University of lllinois Urbana-Champaign?, IBM Research?

