
DLBricks: Composable Benchmark Generation to Reduce Deep
Learning Benchmarking Effort on CPUs

Cheng Li, Abdul Dakkak
University of Illinois
Urbana-Champaign
Urbana, Illinois

{cli99,dakkak}@illinois.edu

Jinjun Xiong
IBM T. J. Watson Research Center
Yorktown Heights, New York

jinjun@us.ibm.com

Wen-mei Hwu
University of Illinois
Urbana-Champaign
Urbana, Illinois

w-hwu@illinois.edu

ABSTRACT
The past few years have seen a surge of applying Deep Learning
(DL) models for a wide array of tasks such as image classification,
object detection, machine translation, etc. While DL models provide
an opportunity to solve otherwise intractable tasks, their adoption
relies on them being optimized to meet target latency and resource
requirements. Benchmarking is a key step in this process but has
been hampered in part due to the lack of representative and up-to-
date benchmarking suites.

This paper proposes DLBricks, a composable benchmark gen-
eration design that reduces the effort of developing, maintaining,
and running DL benchmarks. DLBricks decomposes DL models
into a set of unique runnable networks and constructs the origi-
nal model’s performance using the performance of the generated
benchmarks. Since benchmarks are generated automatically and
the benchmarking time is minimized, DLBricks can keep up-to-date
with the latest proposed models, relieving the pressure of selecting
representative DL models. We evaluate DLBricks using 50 MXNet
models spanning 5 DL tasks on 4 representative CPU systems. We
show that DLBricks provides an accurate performance estimate
for the DL models and reduces the benchmarking time across sys-
tems (e.g. within 95% accuracy and up to 4.4× benchmarking time
speedup on Amazon EC2 c5.xlarge).

CCS CONCEPTS
• Computing methodologies→Machine learning; • General
and reference→Performance;Evaluation; • Software and its
engineering→ Software maintenance tools.

KEYWORDS
Deep Learning; Benchmarking; Performance Measurement

ACM Reference Format:
Cheng Li, Abdul Dakkak, Jinjun Xiong, and Wen-mei Hwu. 2020. DLBricks:
Composable Benchmark Generation to Reduce Deep Learning Benchmark-
ing Effort on CPUs. In Proceedings of the 2020 ACM/SPEC International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00
https://doi.org/10.1145/3358960.3379143

Conference on Performance Engineering (ICPE ’20), April 20–24, 2020, Edmon-
ton, AB, Canada. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3358960.3379143

������

���������

���

������

�� ������

���������� �� ������

���� ���� ���� ����
�

�

��

��

��

�

����

�����

�����

�����

����

#
�
�
�
�
�
�
�
��
�
�
�
�
��

#
�
�
�
�
�
�
��

Figure 1: The number ofDLmodels included in the recent published
DL benchmark suites (Fathom [1], DawnBench [?], TBD [20], AI
Matrix [19], andMLPerf [11]) compared to the number of DL papers
published in the same year (using Scopus Preview [13]) .

1 INTRODUCTION
The recent progress made by Deep Learning (DL) in a wide array
of applications, such as autonomous vehicles, face recognition,
object detection, machine translation, fraud detection, etc. has led
to increased public interest in DL models. Benchmarking these
trained DL models before deployment is critical, as DL models must
meet target latency and resource constraints. Hence there have been
significant efforts to develop benchmark suites that evaluate widely
used DL models [1, 11, 19, 20]. An example is MLPerf [11], which
is formed as a collaboration between industry and academia and
aims to provide reference implementations for DL model training
and inference.

However, developing, maintaining, and running benchmarks
takes a non-trivial amount of effort. For each DL task of interest,
benchmark suite authors select a small representative subset (or
one) out of tens or even hundreds of candidate models. Deciding
on a representative set of models is an arduous effort as it takes a
long debating process to determine what models to add and what
to exclude. For example, it took over a year of weekly discussion
to determine and publish MLPerf v0.5 inference models, and the
number of models was reduced from the 10 models originally con-
sidered to 5. Figure 1 shows the gap between the number of DL
papers [13] and the number of models included in recent bench-
marking efforts. Given that DL models are proposed or updated on
a daily basis [5, 8], it is very challenging for benchmark suites to
be agile and representative of real-world DL model usage. More-
over, only public available models are considered for inclusion in
benchmark suites. Proprietary models are trade secrets or restricted

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

202

https://doi.org/10.1145/3358960.3379143
https://doi.org/10.1145/3358960.3379143
https://doi.org/10.1145/3358960.3379143

by copyright and cannot be shared externally for benchmarking.
Thus, proprietary models are not included or represented within
benchmark suites.

To address the above issues, we propose DLBricks — a compos-
able benchmark generation design that reduces the effort to develop,
maintain, and run DL benchmarks. Given a set of DL models, DL-
Bricks parses them into a set of atomic (i.e. non-overlapping) unique
layer sequences based on the user-specified benchmark granularity
(𝐺). A layer sequence is a chain of layers. Two layer sequences are
considered the same (i.e. not unique) if they are identical ignoring
their weight values. DLBricks then generates unique runnable net-
works (i.e. subgraphs of the model with at most𝐺 layers that can be
executed by a framework) using the layer sequences’ information,
and these networks form the representative set of benchmarks for
the input models. Users run the generated benchmarks on a system
of interest and DLBricks uses the benchmark results to construct a
performance estimate on that system.

DLBricks leverages two key observations on DL inference: 1

Layers are the performance building blocks of the model perfor-
mance. 2 Layers (considering their layer type, shape, and parame-
ters, but ignoring the weights) are extensively repeated within and
across DL models. DLBricks uses both observations to generate a
representative benchmark suite, minimize the time to benchmark,
and estimate a model’s performance from layer sequences.

Since benchmarks are generated automatically by DLBricks,
benchmark development and maintenance effort are greatly re-
duced. DLBricks is defined by a set of simple consistent principles
and can be used to benchmark and characterize a broad range of
models. Moreover, since each generated benchmark represents only
a subset of the input model, the input model’s topology does not
appear in the output benchmarks. This, along with the fact that
“fake” or dummymodels can be inserted into the set of input models,
means that the generated benchmarks can represent proprietary
models without the concern of revealing proprietary models.

In summary, this paper makes the following contributions:
• We perform a comprehensive performance analysis of 50 state-
of-the-art DL models on CPUs and observe that layers are the
performance building blocks of DL models, thus a model’s per-
formance can be estimated using the performance of its layers
(Section 2.1).
• We also perform an in-depth DL architecture analysis of the DL
models and make the observation that DL layers with the same
type, shape, and parameters are repeated extensively within and
across models (Section 2.2).
• We propose DLBricks, a composable benchmark generation de-
sign that decomposes DL models into a set of unique runnable
networks and constructs the original model’s performance using
the performance of the generated benchmarks (Section 3).
• We evaluate DLBricks using 50 MXNet models spanning 5 DL
tasks on 4 representative CPU systems (Section 4). We show that
DLBricks provides a tight performance estimate for DLmodels and
reduces the benchmarking time across systems. The composed
model latency is within 95% of the actual performance while up
to 4.4× benchmarking speedup is achieved on the Amazon EC2
c5.xlarge system.
This paper is structured as follows. First, we detail two key ob-

servations that enable our design in Section 2. We then propose

Table 1: The 50 MXNet models [12] used for evaluation, including
Image Classification (IC), Image Processing (IP), Object Detection
(OD), Regression (RG) and Semantic Segmentation (SS) tasks.

ID Name Task Num
Layers

1 Ademxapp Model A Trained on ImageNet Competition Data IC 142
2 Age Estimation VGG-16 Trained on IMDB-WIKI and Looking at People Data IC 40
3 Age Estimation VGG-16 Trained on IMDB-WIKI Data IC 40
4 CapsNet Trained on MNIST Data IC 53
5 Gender Prediction VGG-16 Trained on IMDB-WIKI Data IC 40
6 Inception V1 Trained on Extended Salient Object Subitizing Data IC 147
7 Inception V1 Trained on ImageNet Competition Data IC 147
8 Inception V1 Trained on Places365 Data IC 147
9 Inception V3 Trained on ImageNet Competition Data IC 311
10 MobileNet V2 Trained on ImageNet Competition Data IC 153
11 ResNet-101 Trained on ImageNet Competition Data IC 347
12 ResNet-101 Trained on YFCC100m Geotagged Data IC 344
13 ResNet-152 Trained on ImageNet Competition Data IC 517
14 ResNet-50 Trained on ImageNet Competition Data IC 177
15 Squeeze-and-Excitation Net Trained on ImageNet Competition Data IC 874
16 SqueezeNet V1.1 Trained on ImageNet Competition Data IC 69
17 VGG-16 Trained on ImageNet Competition Data IC 40
18 VGG-19 Trained on ImageNet Competition Data IC 46
19 Wide ResNet-50-2 Trained on ImageNet Competition Data IC 176
20 Wolfram ImageIdentify Net V1 IC 232
21 Yahoo Open NSFW Model V1 IC 177
22 AdaIN-Style Trained on MS-COCO and Painter by Numbers Data IP 109
23 Colorful Image Colorization Trained on ImageNet Competition Data IP 58
24 ColorNet Image Colorization Trained on ImageNet Competition Data IP 62
25 ColorNet Image Colorization Trained on Places Data IP 62
26 CycleGAN Apple-to-Orange Translation Trained on ImageNet Competition Data IP 94
27 CycleGAN Horse-to-Zebra Translation Trained on ImageNet Competition Data IP 94
28 CycleGAN Monet-to-Photo Translation IP 94
29 CycleGAN Orange-to-Apple Translation Trained on ImageNet Competition Data IP 94
30 CycleGAN Photo-to-Cezanne Translation IP 96
31 CycleGAN Photo-to-Monet Translation IP 94
32 CycleGAN Photo-to-Van Gogh Translation IP 96
33 CycleGAN Summer-to-Winter Translation IP 94
34 CycleGAN Winter-to-Summer Translation IP 94
35 CycleGAN Zebra-to-Horse Translation Trained on ImageNet Competition Data IP 94
36 Pix2pix Photo-to-Street-Map Translation IP 56
37 Pix2pix Street-Map-to-Photo Translation IP 56
38 Very Deep Net for Super-Resolution IP 40
39 SSD-VGG-300 Trained on PASCAL VOC Data OD 145
40 SSD-VGG-512 Trained on MS-COCO Data OD 157
41 YOLO V2 Trained on MS-COCO Data OD 106
42 2D Face Alignment Net Trained on 300W Large Pose Data RG 967
43 3D Face Alignment Net Trained on 300W Large Pose Data RG 967
44 Single-Image Depth Perception Net Trained on Depth in the Wild Data RG 501
45 Single-Image Depth Perception Net Trained on NYU Depth V2 and Depth in the Wild Data RG 501
46 Single-Image Depth Perception Net Trained on NYU Depth V2 Data RG 501
47 Unguided Volumetric RG Net for 3D Face Reconstruction RG 1029
48 Ademxapp Model A1 Trained on ADE20K Data SS 141
49 Ademxapp Model A1 Trained on PASCAL VOC2012 and MS-COCO Data SS 141
50 Multi-scale Context Aggregation Net Trained on CamVid Data SS 53

DLBricks in Section 3 and describe how it provides a streamlined
benchmark generation workflow which lowers the effort to bench-
mark. Section 4 evaluates DLBricks using 50 models running on
4 systems. In Section 5 we describe different benchmarking ap-
proaches previously performed. We then describe future work in
Section 6 before we conclude in Section 7.

2 MOTIVATION
DLBricks is designed based on two key observations presented
in this section. To demonstrate and support these observations,
we perform comprehensive performance and architecture analysis
of state-of-the-art DL models. Evaluations in this section use 50
MXNet models of different DL tasks (listed in Table 1) and were
run with MXNet (v1.5.1 MKL release) on a Amazon c5.2xlarge
instance (as listed in Table 2). We focus on latency sensitive (batch
size = 1) DL inference on CPUs.

2.1 Layers as the Performance Building Blocks
A DL model is a directed acyclic graph (DAG) where each ver-
tex within the DAG is a layer (i.e. operator, such as convolution,
batchnormalization, pooling, element-wise, softmax) and an edge

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

203

represents the transfer of data. For a DL model, a layer sequence is
defined as a simple path within the DAG containing one or more
vertices. A subgraph, on the other hand, is defined as a DAG com-
posed of one or more layers within the model (i.e. subgraph is a
superset of layer sequence, and may or may not be a simple path).
We are only interested in network subgraphs that are runnable
within frameworks and we call these runnable subgraphs runnable
networks.

DL models may contain layers that can be executed indepen-
dently in parallel. The network made of these data-independent
layers is called a parallel module. For example, Figure 2a shows the
VGG16 [14] (ID=17) model architecture. VGG16 contains no paral-
lel module and is a linear sequence of layers. Inception V3 [15]
(ID=9) (shown in Figure 2b), on the other hand, contains a mix of
layer sequences and parallel modules.

DL frameworks such as TensorFlow, PyTorch, and MXNet ex-
ecute a DL model by running the layers within the model graph.
We explore the relation between layer performance and model per-
formance by decomposing each DL model in Table 1 into layers.
We define a model’s critical path to be a simple path from the start
layer to the end layer with the highest latency. For a DL model,
we add all its layers’ latency and refer to the sum as the sequential
total layer latency, since this assumes all the layers are executed
sequentially by the DL framework. Theoretically, data-independent
paths within a parallel module can be executed in parallel, thus we
also calculate the parallel total layer latency by adding up the layer
latencies along the critical path. The critical path of both VGG 16
(ID=17) and Inception V3 (ID=9) is highlighted in red in Figure 2.
For models that do not have parallel modules, the sequential total
layer latency is equal to the parallel total layer latency.

For each of the 50 models, we compare both sequential and par-
allel total layer latency to the model’s end-to-end latency. Figure 3
shows the normalized latencies in both cases. For models with
parallel modules, the parallel total layer latencies are much lower
than the model’s end-to-end latency. The difference between the
sequential total layer latencies and the models’ end-to-end latencies
are small. The normalized latencies are close to 1 with a geometric
metric mean of 91.8% for the sequential case. This suggests the cur-
rent software/hardware stack does not exploit parallel execution
of data-independent layers or overlapping of layer execution, we
verified this by inspecting the source code of popular frameworks
such as MXNet, PyTorch, and TensorFlow.

The difference between a model’s end-to-end latency and its
sequential total layer latency is due to the complexity of model
execution within DL frameworks and the underlying software/hard-
ware stack. We identified two major factors that may affect this
difference: framework overhead and memory caching. Executing a
model within frameworks introduced an overhead that is roughly
proportional to the number of the layers. This is because frame-
works need to perform bookkeeping, layer scheduling, and memory
management for model execution. Therefore, the measured end-to-
end performance can be larger than the total layer latency. On the
other hand, both the framework and the underlying software/hard-
ware stack can take advantage of caching to decrease the latency of
data-dependent layers. For memory-bound layers, this can achieve
significant speedup and therefore the measured end-to-end per-
formance can be lower than the total layer latency. Depending on

which factor is dominant, the normalized latency can be larger or
smaller than 1. Based on this, we formulate the 1 observation:

Observation 1: DL layers are the performance building blocks
of the model performance, therefore, a model’s performance
can be estimated using the performance of its layers. Moreover,
a simple summation of layer-wise latency is an effective ap-
proximation of the end-to-end latency given the current DL
software stack (no parallel execution of data-independent layers
or overlapping of layer execution) on CPUs.

2.2 Layer Repeatability
From a model architecture point of view, a DL layer is identified
by its type, shape, and parameters. For example, a convolution
layer is identified by its input shape, output channels, kernel size,
stride, padding, dilation, etc. Layers with the same type, shape,
parameters (i.e. only differ in weights) are expected to have the same
performance. We inspected the source code of popular frameworks
and verified this, as they do not perform any special optimizations
for weights. Thus in this paper we consider two layers to be the
same if they have the same type, shape, parameters, ignoring weight
values, and two layers are unique if they are not the same.

DLmodels tend to have repeated layers ormodules (or subgraphs,
e.g. Inception and ResNet modules). For example, Figure 4 shows
the model architecture of ResNet-50 with the ResNet modules
detailed. Different ResNet modules have layers in common and
ResNet modules 2, 4, 6, 8 are entirely repeated within ResNet-50.
Moreover, DL models are often built on top of existing models (e.g.
transfer learning [17] where models are retrained with different
data), using common modules (e.g. TensorFlow Hub [16]), or using
layer bundles for Neural Architecture Search [7, 18]. This results
in ample repeated layers when looking at a corpus of models. We
quantitatively explore the layer repeatability within and across
models.

Figure 5 shows the percentage of unique layers within each
model in Table 1. We can see that layers are extensively repeated
within DL models. For example, in Unguided Volumetric Regres-
sion Net for 3D Face Reconstruction (ID=47) which has 1029
layers, only 3.9% of the total layers are unique. We further look at
the repeated layers within each model and Figure 6 shows their type
distribution. As we can see Convolution, Elementwise, BatchNorm,
and Norm are the most repeated layer types in terms of intra-model
layer repeatability. If we consider all 50 models in Table 1, the total
number of layers is 10, 815, but only 1, 529 are unique (i.e. 14% are
unique).

We illustrate the layer repeatability across models by quantifying
the similarity of any twomodels listed in Table 1.We use the Jaccard
similarity coefficient; i.e. for any two models𝑀1 and𝑀2 the Jaccard
similarity coefficient is defined by |L1∩L2 |

|L1∪L2 | where L1 and L2 are
the layers of 𝑀1 and 𝑀2 respectively. The results are shown in
Figure 7. Each cell corresponds to the Jaccard similarity coefficient
between the models at the row and column. As shown, models that
share the same base architecture but are retrained using different
data (e.g. CycleGAN* models with IDs 26 − 35 and Inception V1*
models with IDs 6 − 8) have many common layers. Layers are

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

204

(a) VGG16 (ID=17).

…

(b) Inception V3 (ID=9).
Figure 2: The model architecture of VGG16 (ID=17) and Inception V3 (ID=9). The critical path is highlighted in red.

���������� ��������

���

���

���

���

���

���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

Figure 3: The sequential and parallel total layer latency normalized
to the model’s end-to-end latency using batch size 1 on c5.2xlarge
in Table 2.

common across models within the same family (e.g. ResNet*) since
they are built from the same set of modules (e.g. ResNet-50 is
shown in Figure 4), or when solving the same task (e.g. the image
classification task category). Based on this, we formulate the 2

observation:

Observation 2: Layers are repeated within and across DL mod-
els. This enables us to decrease the benchmarking time since
only a representative set of layers need to be evaluated.

The above two observations suggest that if we can decompose
models into layers, and then take the union of them to produce a set
of representative runnable networks, then benchmarking the rep-
resentative runnable networks is sufficient to construct the perfor-
mance of the input models. Since we only look at the representative
set, the total runtime is less than running all models directly, thus
DLBricks can be used to reduce benchmarking time. Since layer de-
composition elides the input model topology, models can be private
while their benchmarks can be public. The next section (Section 3)
describes how we leverage these two observations to build a bench-
mark generator while having a workflow where one can construct a
model’s performance based on the benchmarked layer performance.
We further explore the design space of benchmark granularity and
its effect on performance construction accuracy.

3 DESIGN
This section presents DLBricks, a composable benchmark gener-
ation design for DL models. The design is motivated by the two
observations discussed in Section 2. DLBricks explores not only
layer level model composition, but also sequence level composi-
tion where a layer sequence is a chain of layers. The benchmark
granularity (𝐺) specifies the maximum numbers of layers within
any layer sequence in the output generated benchmarks.𝐺 is intro-
duced to account for the effects of model execution complexity (e.g.
framework overhead and caching as discussed in Section 2.1). Thus,
a larger 𝐺 is expected to increase the accuracy of performance
construction. On the other hand, a larger 𝐺 might decrease the
layer repeatability across models. Therefore, a balance needs to be
struck (by the user) between performance construction accuracy
and benchmarking time speedup.

The design and workflow of DLBricks is shown in Figure 8.
DLBricks consists of a benchmark generation workflow and a per-
formance construction workflow. To generate composable bench-
marks, one uses the benchmark generator workflow where: 1 the
user inputs a set of models (𝑀1, ..., 𝑀𝑛) along with a target bench-
mark granularity. 2 The benchmark generator parses the input
models into a representative (unique) set of non-overlapping layer
sequences and then generates a set of runnable networks (𝑆1, ..., 𝑆𝑘)
using these layer sequences’ information. 3 The user evaluates the
set of runnable networks on a system of interest to get each bench-
mark’s corresponding performance (𝑃𝑆1 , ..., 𝑃𝑆𝑘). The benchmark
results are stored and 4 are used within the performance construc-
tion workflow. 5 To construct the performance of an input model,
the performance constructor queries the stored benchmark results
for the layer sequences within the model, and then 6 computes
the model’s estimated performance (𝑃𝑀1 , ..., 𝑃𝑀𝑘

). This section de-
scribes both workflows in detail.

3.1 Benchmark Generation
The benchmark generator takes a list of models𝑀1, . . . , 𝑀𝑛 and a
benchmark granularity 𝐺 . The benchmark granularity specifies the
maximum sequence length of the layer sequences generated. This
means that when𝐺 = 1, each generated benchmark is a single-layer
network, whereas when𝐺 = 2 each generated benchmark contains
at most 2 layers.

To split a model with the specified benchmark granularity, we use
FindModelSubgraphs (Algorithm 1). The FindModelSubgraphs
takes a model and a maximum sequence length and iteratively
generates a set of non-overlapping layer sequences. First, the layers
in the model are sorted topologically and then calls the SplitModel
function (Algorithm 2) with the desired begin and end layer offset.
This SplitModel tries to create a runnable DL network (i.e. a valid
DL network) using the range of layers desired, if it fails (e.g. a net-
work which cannot be constructed due to input/output layer shape
mismatch1), then SplitModel creates a network with the current
layer and shifts the begin and end positions. The SplitModel re-
turns a list of runnable DL networks (𝑆𝑖 , . . . , 𝑆𝑖+𝑗) along with the
end position to FindModelSubgraphs. The FindModelSubgraphs
terminates when no other subsequences can be created.

The benchmark generator applies the FindModelSubgraphs for
each of the inputmodels. A set of representative (i.e. unique) runnable
DL networks (𝑆1, . . . , 𝑆𝑘) is then computed.We say two sequences 𝑆1
and 𝑆2 are the same if they have the same topology along with the
same node parameters (i.e. they are the same DL network modulo

1An example invalid network is one which contains a Concat layer, but does not have
all of the Concat layer’s required input layers.

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

205

� BN P P P F S

Module 1 Module 2

1 2 2 3

Module 3 Module 4

4 4 4 5

Module 5 Module 6

6 6 6 6 6 7

Module 7 Module 8

8 8

�

�

BN +

BN � BN � BN
64⨯56⨯56

64⨯56⨯56

256⨯56⨯56 256⨯56⨯56

64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 256⨯56⨯56

256⨯56⨯56
256⨯56⨯56 256⨯56⨯56

+

� BN � BN � BN

256⨯56⨯56

256⨯56⨯56
64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 64⨯56⨯56 256⨯56⨯56

25
6⨯
56
⨯5
6

256⨯56⨯56 256⨯56⨯56

�

�

BN +

BN � BN � BN
256⨯56⨯56

256⨯56⨯56

512⨯28⨯28 512⨯28⨯28

128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 512⨯28⨯28

512⨯28⨯28
512⨯28⨯28 512⨯28⨯28

+

� BN � BN � BN

512⨯28⨯28

512⨯28⨯28
128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 128⨯28⨯28 512⨯28⨯28

51
2⨯
28
⨯2
8

512⨯28⨯28 512⨯28⨯28

�

�

BN +

BN � BN � BN
512⨯28⨯28

512⨯28⨯28

1024⨯14⨯14 1024⨯14⨯14

256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 1024⨯14⨯14

1024⨯14⨯14
1024⨯14⨯14 1024⨯14⨯14

+

� BN � BN � BN

1024⨯14⨯14

1024⨯14⨯14
256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 256⨯14⨯14 1024⨯14⨯14

10
24
⨯1
4⨯
14

1024⨯14⨯14 1024⨯14⨯14

�

�

BN +

BN � BN � BN
1024⨯14⨯14

1024⨯14⨯14

2048⨯7⨯7 2048⨯7⨯7

512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 2048⨯7⨯7

2048⨯7⨯7
2048⨯7⨯7 2048⨯7⨯7

+

� BN � BN � BN

2048⨯7⨯7

2048⨯7⨯7
512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 512⨯7⨯7 2048⨯7⨯7

20
48
⨯7
⨯7

2048⨯7⨯7 2048⨯7⨯7

Figure 4: The ResNet-50 (ID=14) architecture. The detailed ResNet modules 1 − 8 are listed above the model graph.

� � � � � � � � � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

��

��

��

��

���

����� ��

%
�
�
��
�
�

Figure 5: The percentage of unique layers in the models in Table 1,
indicating that some layers are repeated within the model.

Algorithm 1 The FindModelSubgraphs algorithm.
Input:𝑀 (Model),𝐺 (Benchmark Granularity)
Output:𝑀𝑜𝑑𝑒𝑙𝑠

1: 𝑏𝑒𝑔𝑖𝑛 ← 0, 𝑀𝑜𝑑𝑒𝑙𝑠 ← {}
2: 𝑣𝑒𝑟𝑡𝑠 ← TopologicalOrder(ToGraph(𝑀))
3: while 𝑏𝑒𝑔𝑖𝑛 ≤ Length(𝑣𝑒𝑟𝑡𝑠) do
4: 𝑒𝑛𝑑 ← Min(𝑏𝑒𝑔𝑖𝑛 +𝐺, Length(𝑣𝑠))
5: 𝑠𝑚 ← SplitModel(𝑣𝑒𝑟𝑡𝑠,𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑)
6: 𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝑀𝑜𝑑𝑒𝑙𝑠 + 𝑠𝑚 [“models”]
7: 𝑏𝑒𝑔𝑖𝑛 ← 𝑠𝑚 [“end”] + 1
8: end while
9: return𝑀𝑜𝑑𝑒𝑙𝑠

Algorithm 2 The SplitModel algorithm.
Input: 𝑣𝑒𝑟𝑡𝑠 , 𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑
Output: ⟨“models”, “end”⟩ ⊲ Hash table

1: 𝑣𝑠 ← 𝑣𝑒𝑟𝑡𝑠 [𝑏𝑒𝑔𝑖𝑛 : 𝑒𝑛𝑑]
2: try
3: 𝑚 ← CreateModel(𝑣𝑠) ⊲ Creates a valid model
4: return ⟨“models”→ {𝑚} , “end”→ 𝑒𝑛𝑑 ⟩ ⊲ Hash table with keys: “model” and “end”
5: catchModelCreateException
6: 𝑚 ← {CreateModel({𝑣𝑒𝑟𝑡𝑠 [𝑏𝑒𝑔𝑖𝑛] }) } ⊲ Creates a model with a single node
7: 𝑛 ← SplitModel(𝑣𝑒𝑟𝑡𝑠, 𝑏𝑒𝑔𝑖𝑛 + 1, 𝑒𝑛𝑑 + 1) ⊲ Recrusively split the model
8: return ⟨“models”→𝑚 + 𝑛 [“models”] , “end”→ 𝑛 [“end”] ⟩
9: end try

the weights). The unique networks are exported to the frameworks’
network format and the user runs them with synthetic input data
based on each network’s input shape. The performance of each
network is stored (𝑃𝑆𝑖 . . . , 𝑃𝑆𝑘) and used by the performance con-
struction workflow.

3.2 DL Model Performance Construction
DLBricks uses the performance of the layer sequences to construct
an estimate to the end-to-end performance of the input model 𝑀 .
To construct a performance estimate, the input model is parsed
and goes through the same process 1 in Figure 8. This creates a
set of layer sequences. The performance of each layer sequence is
queried from the benchmark results (𝑃𝑆𝑖 . . . , 𝑃𝑆𝑘). DLBricks sup-
ports both sequential and parallel performance construction. Se-
quential performance construction is performed by summing up
all of the resulting queried results, whereas parallel performance
construction sums up the results along the critical path of the model.
Since current frameworks exhibit a sequential execution strategy
(from Section 2.1), sequential performance construction is used
within DLBricks by default. Other performance construction can
be easily added to DLBricks to accommodate different framework
execution strategies.

4 EVALUATION
This section focuses on demonstrating DLBricks is valid in terms
of performance construction accuracy and benchmarking time
speedup. We explore the effect of benchmark granularity on the
constructed performance estimation as well as the benchmarking
time. We evaluated DLBricks with 50 DL models (listed in Table 1)
using MXNet (v1.5.1 using MKL v2019.3) on 4 different Amazon
EC2 instances. These systems are recommended by Amazon [2]
for DL inference and are listed in Table 2. To maintain consis-
tent CPU evaluation, the systems are configured to disable CPU
frequency scaling, turbo-boosting, scaling-governor, and hyper-
threading. Each benchmark is run 100 times and the 20th percentile
trimmed mean is reported.

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

206

����������� ��������� �������� ����������� ������� ����������� ���� ������� ��������� ��������� �����
� � � � � � � � � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

��

��

��

��

���

����� ��

%
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�

Figure 6: The type distribution of the repeated layers.

������� ����������

� ��� ��� ��� ��� ���

� � �� �� �� �� �� �� �� �� ��

�

�

��

��

��

��

��

��

��

��

��

� � �� �� �� �� �� �� �� �� ��
�

�

��

��

��

��

��

��

��

��

��

����� ��

�
�
�
�
�
��

Figure 7: The Jaccard Similarity grid of the models in Table 1. Solid
red indicates two models have identical layers, and black means
there is no common layer.

{PM1
, …, PMn

}

Performance
Constructor

4

{PS1
, …, PSk

}3

{M1, …, Mn}

{S1, …, Sk}

Running Benchmarks

Benchmark
Generator

Benchmark
Granularity

1 1

2

6

5

§4
.1

§4
.2

P
erform

ance C
onstruction W

orkflow

B
enchm

ark G
eneration W

orkflow

Legend:

Figure 8: DLBricks design and workflow.

Table 2: Evaluations are performed on the 4 Amazon EC2 systems
listed. The c5.* systems operate at 3.0GHz, while the c4.* systems
operate at 2.9GHz. The systems are ones recommended by Amazon
for DL inference.

Instance CPUS Memory (GiB) $/hr

c5.xlarge 4 Intel Platinum 8124M 8GB 0.17
c5.2xlarge 8 Intel Platinum 8124M 16GB 0.34
c4.xlarge 4 Intel Xeon E5-2666 v3 7.5GB 0.199
c4.2xlarge 8 Intel Xeon E5-2666 v3 15GB 0.398

4.1 Performance Construction Accuracy
We first ran the end-to-end models on the 4 systems to understand
their performance characteristics, as shown in Figure 9. Then, using
DLBricks, we constructed the latency estimate of the models based
on the performance of their layer sequence benchmarks. Figure 10
shows the constructed model latency normalized to the model’s
end-to-end latency for all the models with varying benchmark gran-
ularity from 1 to 6 on c5.2xlarge. We see that the constructed
latency is a tight estimate of the model’s actual performance across
models and benchmark granularities. E.g., for benchmark granular-
ity𝐺 = 1, the normalized latency ranges between 82.9% and 98.1%
with a geometric mean of 91.8%.

As discussed in Section 2.1, the difference between a model’s
end-to-end latency and its constructed latency is due to the combi-
national effect of model execution complexity such as framework
overhead and caching, thus the normalized latency can be either
below or above 1. At𝐺 = 1 (layer granularity model decomposition
and construction), where a model is decomposed into the largest
number of sequences, the constructed latency is slightly less ac-
curate compared to other 𝐺 values. Using the number of layers in
Table 1 and the model end-to-end latency in Figure 9, we see no
direct correlation between the performance construction accuracy,
number of model layers, or end-to-end latency.

Figure 11 shows the geometric mean of the normalized latency
(the constructed latency normalized to the end-to-end latency)
of all the 50 models across systems and benchmark granularities.
Model execution in a framework is system-dependent, thus the
performance construction accuracy is not only model-dependent
but also system-dependent. Overall, the estimated latency is within
5% (e.g. 𝐺 = 3, 5, 9, 10) to 11% (𝐺 = 1) of the model end-to-end
latency across systems. This demonstrates that DLBricks provides a
tight estimate to input models’ actual performance across systems.

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

207

� � � � � � � � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��������� ���������� ��������� ����������

����

����

�

��

����� ��

�
�
��
�
�
�
(�
)

Figure 9: The end-to-end latency of all models in log scale across systems.

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

(a) Benchmark Granularity=1

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

(b) Benchmark Granularity=2

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

(c) Benchmark Granularity=3

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

(d) Benchmark Granularity=4
� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

(e) Benchmark Granularity=5

� � � � � � � � � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

����� ��

�
�
��
�
���
�
�
�
�
��
�
�
�

(f) Benchmark Granularity=6
Figure 10: The constructed model latency normalized to the model’s end-to-end latency for the 50 model in Table 1 on c5.2xlarge. The
benchmark granularity varies from 1 to 6. Sequence 1 means each benchmark has one layer (layer granularity).

��������� ���������� ��������� ����������

� � � � ��
����

����

����

����

����

��������� �����������

�
�
�
�
�
�
�

�
�
��
�
���
�
�
�
�
��
�
�
�

Figure 11: The geometric mean of the normalized latency (con-
structed vs end-to-end latency) of all the 50models on the 4 systems
with varying benchmark granularity from 1 to 10.

��������� ���������� ��������� ����������

� � � � ��
���

���

���

���

���

���

��������� �����������

�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�

Figure 12: The speedup of total benchmarking time for the all the
models across systems and benchmark granularities.

4.2 Benchmarking Time Speedup
DLBricks decreases the benchmarking time by only evaluating
the unique layer sequences within and across models. Recall from
Section 2.2 that for all the 50 models, the total number of layers is
10, 815, but only 1, 529 are unique (i.e. 14% are unique). Figure 12
shows the speedup of the total benchmarking time across systems
as benchmark granularity varies. The benchmarking time speedup
is calculated as the sum of the end-to-end latency of all models
divided by the sum of the latency of all the generated benchmarks.
Up to 4.4× benchmarking time speedup is observed for 𝐺 = 1 on
the c5.xlarge system. The speedup decreases as the benchmark
granularity increases. This is because as the benchmark granularity
increases, the chance of having repeated layer sequences within
and across models decreases.

Figure 11 and Figure 12 suggest a trade-off exists between the per-
formance construction accuracy and benchmarking time speedup
and the trade-off is system-dependent. For example, while 𝐺 = 1
(layer granularity model decomposition and construction) produces

the maximum benchmarking time speedup, the constructed latency
is slightly less accurate comparing to other𝐺 values on the systems.
Since this accuracy loss is small, overall, 𝐺 = 1 is a good choice
of benchmark granularity configuration for DLBricks given the
current DL software stack on CPUs.

5 RELATEDWORK
To characterize the performance of DL models, both industry and
academia have invested in developing benchmark suites that char-
acterize models and systems. The benchmarking methods are ei-
ther end-to-end benchmarks (performing user-observable latency
measurement on a set of representative DL models [11, 19?]) or
are micro-benchmarks [3, 4, 19] (isolating common kernels or lay-
ers that are found in models of interest). The end-to-end bench-
marks target end-users and measure the latency or throughput of a
model under a specific workload scenario. The micro-benchmark
approach, on the other hand, distills models to their basic atomic
operations (such as dense matrix multiplies, convolutions, or com-
munication routines) andmeasures their performance to guide hard-
ware or software design improvements [6]. While both approaches
are valid and have their use cases, their benchmarks are manually
selected and developed. As discussed, curating and maintaining
these benchmarks requires significant effort and, in the case of lack
of maintenance, these benchmarks become less representative of
real-world models.

DLBricks complements the DL benchmarking landscape as it
introduces a novel benchmarking methodology which reduces the
effort of developing, maintaining, and running DL benchmarks. DL-
Bricks relieves the pressure of selecting representative DL models
and copes well with the fast-evolving pace of DL models. DLBricks
automatically decomposes DL models into runnable networks and
generates micro-benchmarks based on these networks. Users can
specify the benchmark granularity. At the two extremes, when
the granularity is 1 a layer-based micro-benchmark is generated,
whereas when the granularity is equal to the number of layers
within the model then an end-to-end network is generated. To

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

208

our knowledge, there has been no previous work solving the same
problem and we are the first to propose such a design.

Previous work [10] also decomposed DL models into layers, but
uses the results to guide performance optimization. DLBricks fo-
cuses on model performance and aims to reduce benchmarking
effort. DLBricks shares similar spirit to synthetic benchmark gener-
ation [9]. However, to the authors’ knowledge, there has been no
previous work on synthetic benchmark generation for DL.

6 DISCUSSION AND FUTUREWORK
Generating Overlapping Benchmarks. — The current design only

considers non-overlapping layer sequences during benchmark gen-
eration. This may inhibit some types of optimizations (such as layer
fusion). A solution requires a small tweak to Algorithm 1 where we
increment the begin by 1 rather than the end index of the Split-
Model algorithm (line 7). A small modification is also needed within
the performance construction step to pick the layer sequence result-
ing in the smallest latency. Future work would explore the design
space when generated benchmarks can overlap.

Adapting to Framework Evolution. — The current DLBricks de-
sign is based on the observation that current DL frameworks do
not execute data-independent layers in parallel. Although DLBricks
supports both sequential and parallel execution (assuming all data-
independent layers are executed in parallel as described in Sec-
tion 3.2), as DL frameworks start to have some support of parallel
execution of data-independent layers, the current design may needs
to be adjusted. To adapt DLBricks to this evolution of frameworks,
one can adjust DLBricks to take user-specified parallel execution
rules. DLBricks can then use the parallel execution rules to make a
more accurate model performance estimation.

Future Work. —While this work focuses on CPUs, we expect the
design to hold for GPUs as well. Future work would explore the
design for GPUs. We are also interested in other use cases that are
afforded by the DLBricks design — model/system comparison and
advising for the cloud. For example, it is common to ask questions
such as, given a DL model which system should I use? or given a
system and a task, which model should I use? Using DLBricks, the
system provider can curate a continuously updated database of
the generated benchmarks results across its system offerings. The
system provider can then perform a performance estimate of the
user’s DL model (without running it) and give suggestions as to
which system to choose.

7 CONCLUSION
The fast-evolving landscape of DL poses considerable challenges
in the DL benchmarking practice. While benchmark suites are un-
der pressure to be agile, up-to-date, and representative, we take
a different approach and propose a novel benchmarking design —
aimed at relieving this pressure. Leveraging the key observations
that layers are the performance building block of DL models and
the layer repeatability within and across models, DLBricks auto-
matically generates composable benchmarks that reduce the effort
of developing, maintaining, and running DL benchmarks. Through
the evaluation of state-of-the-art models on representative systems,

we demonstrated that DLBricks provides a trade-off between per-
formance construction accuracy and benchmarking time speedup.
As the benchmark generation and performance construction work-
flows in DLBricks are fully automated, the generated benchmarks
and their performance can be continuously updated and augmented
as new models are introduced with minimal effort from the user.
Thus DLBricks copes with the fast-evolving pace of DL models.

ACKNOWLEDGMENTS
This work is supported by the IBM-ILLINOIS Center for Cognitive
Computing Systems Research (C3SR) - a member of the IBM Cogni-
tive Horizon Network, and the Applications Driving Architectures
(ADA) Research Center - one of the JUMP Centers co-sponsored by
SRC and DARPA.

REFERENCES
[1] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-yeon Wei, and David Brooks.

2016. Fathom: Reference workloads for modern deep learning methods. In 2016
IEEE International Symposium on Workload Characterization (IISWC). IEEE, IEEE,
1–10.

[2] Amazon. 2019. Recommended CPU Instances. docs.aws.com/dlami/latest/
devguide/cpu.html. Accessed: 2019-10-17.

[3] Baidu. 2019. DeepBench. github.com/baidu-research/DeepBench.
[4] Soumith Chintala. 2019. ConvNet Benchmarks. github.com/soumith/convnet-

benchmarks.
[5] Jeff Dean, David Patterson, and Cliff Young. 2018. ANewGolden Age in Computer

Architecture: Empowering the Machine-Learning Revolution. IEEE Micro 38, 2
(March 2018), 21–29.

[6] Shi Dong, Xiang Gong, Yifan Sun, Trinayan Baruah, and David Kaeli. 2018. Char-
acterizing theMicroarchitectural Implications of a Convolutional Neural Network
(CNN) Execution on GPUs. In Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering - ICPE ’18. ACM, ACM Press, 96–106.

[7] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. Journal of Machine Learning Research 20, 55 (2019), 1–21.

[8] Kim Hazelwood and et al. 2018. Applied Machine Learning at Facebook: A
Datacenter Infrastructure Perspective. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, IEEE, 620–629.

[9] M.D. Hutton, J.S. Rose, and D.G. Corneil. 2002. Automatic generation of synthetic
sequential benchmark circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 21, 8 (Aug. 2002), 928–940.

[10] Cheng Li, Abdul Dakkak, Jinjun Xiong, and Wen-Mei Hwu. 2020. Benanza:
Automatic 𝜇Benchmark Generation to Compute “Lower-bound” Latency and
Inform Optimizations of Deep Learning Models on GPUs. IEEE. The 34th IEEE
International Parallel & Distributed Processing Symposium (IPDPS’20).

[11] MLPerf. 2019. MLPerf. github.com/mlperf.
[12] NeuralNetRepository 2019. Wolfram NeuralNet Repository. https://resources.

wolframcloud.com/NeuralNetRepository/. Accessed: 2019-10-17.
[13] Scopus Preview. [n.d.]. Scopus Preview. https://www.scopus.com/. Accessed:

2019-10-17.
[14] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional

Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
arxiv.org/abs/1409.1556

[15] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2818–2826.

[16] TensorFlowHub [n.d.]. TensorFlowHub is a library for reusable machine learning
modules . https://www.tensorflow.org/hub. Accessed: 2019-10-17.

[17] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. 2016. A survey of
transfer learning. J Big Data 3, 1 (May 2016), 9.

[18] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2018. FBNet:
Hardware-aware Efficient ConvNet Design via Differentiable Neural Architecture
Search. CoRR abs/1812.03443 (2018). arxiv.org/abs/1812.03443

[19] Wei Zhang, Wei Wei, Lingjie Xu, Lingling Jin, and Cheng Li. 2019. AI Ma-
trix: A Deep Learning Benchmark for Alibaba Data Centers. arXiv preprint
arXiv:1909.10562 (2019).

[20] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Ja-
yarajan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. 2018.
Benchmarking and Analyzing Deep Neural Network Training. In 2018 IEEE Inter-
national Symposium on Workload Characterization (IISWC). IEEE, IEEE, 88–100.

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

209

docs.aws.com/dlami/latest/devguide/cpu.html
docs.aws.com/dlami/latest/devguide/cpu.html
github.com/baidu-research/DeepBench
github.com/soumith/convnet-benchmarks
github.com/soumith/convnet-benchmarks
github.com/mlperf
https://resources.wolframcloud.com/NeuralNetRepository/
https://resources.wolframcloud.com/NeuralNetRepository/
arxiv.org/abs/1409.1556
https://www.tensorflow.org/hub
arxiv.org/abs/1812.03443

	Abstract
	1 Introduction
	2 Motivation
	2.1 Layers as the Performance Building Blocks
	2.2 Layer Repeatability

	3 Design
	3.1 Benchmark Generation
	3.2 DL Model Performance Construction

	4 Evaluation
	4.1 Performance Construction Accuracy
	4.2 Benchmarking Time Speedup

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

