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▪ Deep Learning (DL) innovations are introduced at a fast pace

▪ Current lack of standard specification of DL tasks makes sharing, 
running, reproducing, and comparing DL innovations difficult

Background
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▪ Ad-hoc scripts and textual documentation to describe the 
execution process of DL tasks

– Curation of DL tasks in framework model zoo

– Model catalogs that can be used through a cloud provider’s API

▪ Hard to reproduce the reported accuracy or performance results 
and have a consistent comparison across DL artifacts

Current Practice of Publishing DL Artifacts

3



▪ A DL artifact exchange specification with clearly defined model, 
data, software, and hardware aspects 

– Model-, dataset-, software-, and hardware agnostic

– Works with runtimes built using existing MLOp tools

▪ We developed a DLSpec runtime for DL inference tasks in the 
context of benchmarking 

DLSpec Objectives
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▪ Reproducible

▪ Minimal 

– Only contains essential information to increase the transparency and 
ease the creation

▪ Program-/human-readable

– Executed by a runtime/easy to introspect and repurpose

▪ Maximum expressiveness 

– Describes both training and inference

DLSpec is Based on a Few Key Principles 
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▪ Decoupling DL task description 

– Increases the reuse/portability and enables easy of comparison

▪ Splitting the DL task pipeline stages

– Enables consistent comparison and simplifies accuracy and performance 
debugging

▪ Avoiding serializing intermediate data into files

– Avoids high serializing/deserializing overhead

– Supports DL tasks that use streaming data 

DLSpec is Based on a Few Key Principles 

6



DLSpec Design
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▪ Defines the hardware 
requirements for a DL task

▪ Some hardware settings 
cannot be specified within a 
container (E.g. the runtime set 
Intel’s turbo-boosting outside 
the container)

Hardware Manifest
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▪ Defines the software 
environment for a DL task

▪ All executions occur within the 
specified container

▪ Specified environment 
variables are setup after 
running the container

Software Manifest
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▪ Defines the training, 
validation, or test dataset

▪ The source location defines 
where to download the 
dataset from

Dataset Manifest
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▪ Defines the logic to run a DL task and the required artifact 
sources 

Model Manifest
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Python functions, 
executed by the 
runtime through the 
Python sub-interpreter



▪ Defines the logic to run a DL task and the required artifact 
sources 

Model Manifest
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Input and output 
formats



▪ Defines the logic to run a DL task and the required artifact 
sources 

Model Manifest
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Remote resources 
hosted on FTP, 
HTTP, or file servers



▪ A text file provided by the specification author for 
others to refer to. It contains:

– IDs of the manifests used to create it

– Achieved accuracy/performance on
DL task

– Expected outputs

– Author-specified information (e.g. hyper-parameters used in 
training) 

Reference Log
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A DLSpec Runtime Consumes the Manifests
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Selects the hardware

Runs the setup code

Launches the container

Downloads the dataset using the URLs

The dataset file paths are passed to the pre-processing 
function and its outputs match the model’s input format



A DLSpec Runtime Consumes the Manifests
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Downloads the model and runs the inference task

Post-processes the result using the model’s output format 



▪ A distributed runtime that consumes the
DLSpec for inference

– Web and command line UI

– Middleware, e.g. registry, database, tracer

– Framework agents

– Other modular components

A Runtime for Benchmarking DL Inference -
MLModelScope
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The Design and Implementation of a Scalable DL 
Benchmarking Platform, IEEE CLOUD’20



▪ An exchange specification, such as DLSpec, enables a streamlined 
way to share, reproduce, and compare DL tasks

▪ DLSpec takes the first step in defining a DL task for both training 
and inference and captures the different aspects of DL model
reproducibility

▪ We are actively working on refining the specifications as new DL 
tasks are introduced 

Conclusion
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