
Published as a conference paper at ICLR 2023

DySR: ADAPTIVE SUPER-RESOLUTION VIA ALGO-
RITHM AND SYSTEM CO-DESIGN

Syed Zawad1∗, Cheng Li2, Zhewei Yao2, Elton Zheng2, Yuxiong He2, Feng Yan3

1University of Nevada, Reno, 2Microsoft Research, 3University of Houston
szawad@nevada.unr.edu,
{chengli1,zheweiyao,elton.zheng,yuxhe}@microsoft.com,
fyan5@central.uh.edu

ABSTRACT

Super resolution (SR) is a promising approach for improving the quality of low
resolution streaming services on mobile devices. On mobile devices, the avail-
able computing and memory resources change dynamically depending on other
running applications. Due to the high computation and memory demands of SR
models, it is essential to adapt the model according to available resources to har-
vest the best possible model performance while maintaining quality of service
(QoS), such as meeting a minimum frame rate and avoiding interruptions. Never-
theless, there is no SR model or machine learning system that supports adaptive
SR, and enabling adaptive SR model on mobile devices is challenging because
adapting model can cause significant frame rate drop or even service interrup-
tion. To address this challenge, we take an algorithm and system co-design ap-
proach and propose a Dynamic Super Resolution framework called DySR that
maintains QoS while maximizing the model performance. During the training
stage, DySR employs an adaptation-aware one-shot Neural Architecture Search to
produce sub-graphs that share kernel operation weights for low model adaptation
overhead while striking a balance between performance and frame rate. During
the inference stage, an incremental model adaptation method is developed for fur-
ther reducing the model adaptation overhead. We evaluate on a diverse set of
hardware and datasets to show that DySR can generate models close to the Pareto
frontier while maintaining a steady frame rate throughput with a memory footprint
of around 40% less compared to the assembled baseline methods.

1 INTRODUCTION

Deep super-resolution (SR) has been widely used in applications such as medical imaging (Li et al.
(2021)), satellite imaging (Shermeyer & Van Etten (2019)), and image restoration (Qiu et al. (2019)).
SR has attracted lots of attentions in recent years due to the surging demands in mobile services such
as video conference, content sharing, and video streaming, where it helps provide high-resolution
visual content from low-resolution data source (Zhang et al. (2020); Li et al. (2020; 2021)). SR
models are resource demanding (Li et al. (2021); Lu & Hu (2022)) and need to meet Quality of
Service (QoS) standards to provide good user experience in visual services. Examples of QoS
including meeting a minimum frame rate and avoiding interruptions so that users perceive smooth
motions. This, however, is challenging for mobile devices where computing and memory resources
are limited and the availability of which also depends on other running applications. To meet QoS
for different mobile devices, existing works develop models for specific devices (Liu et al. (2021b);
Lee et al. (2019); Ayazoglu (2021)) or use Neural Architecture Search (NAS) (Chu et al. (2021); Guo
et al. (2020); Huang et al. (2021)) to generate multiple hardware-tailored models. However, none of
these approaches considers the fluctuating resource environment of mobile devices and often leads
to poor QoS. One potential way to achieve good QoS is to dynamically adapt the model based on
available resources. The challenges are two folds. First, how to design an adaptive model. Second,
how to enable model adaptation in a live inference system.

∗Work done in part as an intern with the Microsoft DeepSpeed team.

1



Published as a conference paper at ICLR 2023

To enable adaptive model, we employ NAS to generate a set of models with different sizes so that
the most pro�table model is used under each resource availability situation to ensure a steady frame
rate while maximizing the model performance. Unfortunately, none of existing machine learning
frameworks supports live model adaptation. To enable model adaptation in actual system, we explore
two ideas. The �rst idea is to use an assemble method to keep all models loaded in the system at all
times to avoid model switching overhead. However, such a method results in a signi�cantly larger
memory footprint, which is unsuitable for mobile devices. The second idea is to load a single model
at a time, but the the model switching overhead is high as it interrupts the steaming for 1-3 seconds
each time it switches models, leading to even worse QoS.

To achieve low resource consumption while minimizing the model switching overhead, we propose
DySR1, an algorithm and system co-design approach for adaptive SR. To keep a small memory
footprint and minimize adaptation overhead,DySRemploys an adaptation-aware one-shot NAS ap-
proach, where a large meta-graph is trained in one-shot such that sub-graphs share kernel operation
weights while exploring the best tradeoffs between performance and frames-per-second (FPS). Dur-
ing inference, the meta-graph is fully loaded in the memory and operations are dynamically adapted
according to the real-time resource availability in an incremental manner, i.e., only affected opera-
tions are swapped or rerouted. Since we do not need to load new models from the hard disk, there is
no data transfer overhead.

We evaluateDySRagainst baselines across a wide variety of hardware (from powerful GPUs to low-
end mobile processors) using image and video SR datasets (e.g., Urban100 (Huang et al. (2015))
and Vimeo90k (Xue et al. (2019)). Results show thatDySRcan generate models close to the Pareto
frontier of the performance vs. FPS tradeoffs while maintaining a steady frame rate throughput with
low memory footprint (40% less compared to ensemble method).

2 RELATED WORKS

SR. (Dong et al. (2014)) is among the �rst works that employs deep learning models for super-
resolution. Since then deeper and more complex models such as (Soh et al. (2019); Nazeri et al.
(2019)) were proposed for better performance. Generative Adversarial Networks (GANs) (Creswell
et al. (2018); Wang et al. (2019); Ahn et al. (2018); Wang et al. (2018a)) and its variations (Prajapati
et al. (2021); Guo et al. (2020); Shahsavari et al. (2021)) have been shown to be highly effective
in tackling this task. Attention mechanisms were introduced to SR as well (Zhao et al. (2020);
Mei et al. (2021); Chen et al. (2021)). Methods such as network pruning, knowledge distillation,
and quantization have been applied to reduce computational overhead of existing SR deep learning
models (Jiang et al. (2021); Zhang et al. (2021b); Hong et al. (2022); Wang et al. (2021)). However,
all the above efforts focus on building a single model for each hardware and do not consider the
dynamic resource environment in mobile devices, and thus fall short in meeting streaming QoS for
mobile devices.

NAS. Earlier neural architecture search methods rely on Reinforcement Learning (RL) (Zoph &
Le (2016)) and evolutionary algorithms (Lu et al. (2018); van Wyk & Bosman (2019)) for archi-
tecture engineering. However, these methods are extremely resource demanding and often require
thousands of GPU hours. Later works such as (Wen et al. (2020); Jin et al. (2019)) introduce per-
formance prediction, shared weight training, and proxy training to speed up the architecture engi-
neering process. DARTS (Liu et al. (2018)) and its followups (Chen et al. (2019); Wu et al. (2019))
adopt a differentiable architecture search paradigm. The once-for-all work (Cai et al. (2019)) pro-
poses the idea of generating a single model for multiple hardware deployments though pruning and
model swapping is needed for each deployment. One-shot NAS (Bender et al. (2018)) and its vari-
ations (Huang & Chu (2021); Zhang et al. (2021a); Zhao et al. (2021)) can generate models with
few search iterations and have been explored for SR (Chu et al. (2021); Guo et al. (2020); Liu et al.
(2021a); Zhan et al. (2021)) but existing works only focus on designing a single model and do not
consider QoS for streaming on mobile devices. In Section 5, we compareDySRwith existing SR
models. The results show that our model achieves Pareto optimal performance while meeting QoS.

3 MOTIVATIONS AND CHALLENGES
On mobile devices, SR tasks are often running along with other applications, e.g., users often watch
streaming videos while browsing websites or doing online shopping; making video calls while play-

1https://github.com/syed-zawad/srnas

2



Published as a conference paper at ICLR 2023

(a) Utilization Trace (b) Snapdragon 855 (c) Intel i5-560M (d) 1080Ti
models respectively due to being designed speci�cally for the corresponding hardware.

Figure 1: (a) Resource utilization cap over time for each device. (b-d) FPS drop due to reduced
resources. Uses FALSR-C, FALSR-B (Chu et al. (2021)), and CARN (Ahn et al. (2018))

ing games or taking notes. Therefore, the available computing and memory resources for SR is
constantly changing on the already resource constraint mobile devices. We demonstrate the impact
of changing available resources on frame rate for static models running on real mobile devices. We
test a set of state-of-the-art SR models on the mobile devices they were targeted for and manually
limit the amount of resource available over time, i.e., by limiting GPU power and adding background
loads to CPU. We use a workload trace to show how the utilization changes over time, as shown in
Figure 1. We observe that reducing the processing power available for the models over time results
in signi�cant frames-per-second (FPS) drop. This drop at higher utilizations show that the QoS is
impacted. Therefore, the state-of-the-art SR models do not perform as expected under practical cir-
cumstances, and to maintain QoS (i.e., minimum FPS), models need to be adapted according to the
available resources. To �ll this gap, however, is challenging. First, we need to design a set of mod-
els that can achieve Pareto-optimal performance under different frame rates. However, no existing
works can generate such a set of models. Second, we need to adapt models within milliseconds in
the real-time system to meet QoS requirements. Unfortunately, no existing machine learning frame-
works support real-time model adaptation. One potential solution is to switch between a list of

(a) Snapdragon 855 (b) Intel i5-560M (c) 1080Ti (d) Avg. reload time

Figure 2: (a-c) FPS over time when models are reloaded every 5 seconds. (d) Total number of
parameters in memory against the number of static models loaded as one assembled set.

static models according to the available resources. We prototype this idea and perform experiments
on different devices, as shown in Fig. 2. Here, we unload and reload static models as soon as the
utilizations change at the intervals 5, 10, and 15 seconds, as shown in (a), (b), and (c) respectively.
Across all devices, we observe an interruption of service during each model swapping period. As
pointed out in (Liao et al. (2019)), such interruption is the time it takes to read the new model from
storage and initialize all the parameters in memory. Pre-loading multiple static models as one is
a potential solution to avoid such interruption. However, the assembled model has a signi�cantly
higher memory consumption, as shown in Fig. 2d, which is not practical for resource constraint
mobile devices.

4 ALGORITHM AND SYSTEM CO-DESIGN: DySR

To address the aforementioned challenges, in this section, we adopt an algorithm and system co-
design approach and proposeDySR. DySRemploys adaptive-aware one-shot NAS to create a set of
models that achieve Pareto-optimal performance under different frame rate with minimum adapta-
tion overhead during runtime.DySRalso introduces an incremental adaptation approach to further
reduce the model adaptation overhead to meet QoS.

4.1 ADAPTATION-AWARE ONE-SHOT NEURAL ARCHITECTURESEARCH

Neural Architecture Search (NAS) allows creating multiple models in an automated fashion, and
thus we choose it for model generation. However, for SR, existing NAS methods only target for
a �nding a single model with the highest performance while ignoring the frame rate and model
adaptation overhand. To provide QoS on mobile devices, we design an adaptive-aware one-shot

3



Published as a conference paper at ICLR 2023

NAS method for generating a set of models that achieves Pareto-optimal performance with frame
rate constraint and low model adaptation overhead under different hardware devices and resource
availability. Following (Liu et al. (2018); Bender et al. (2018)), we de�ne the architecture search
space asS, which is represented as a single Directed Acyclic Graph (DAG) containing all possible
path and operation combinations, called the meta-graph. The main idea here is to train a meta-
graph's sub-graph models with Pareto-optimal performance across a range of frame rates. The sub-
graphs are all part of the same meta-graph, so that the full meta-graph is deployed and the sub-graphs
can be adapted in real time during inference to maintain QoS using an adaptation policy.

Adaptation-aware Sub-graph Selection. The generation of adaptation-aware sub-graphs requires
two unique criteria to be ful�lled during the NAS search phase to be effective. First, in order to
reduce resource consumption, we need to reduce total memory of the meta-graph to be signi�cantly
less than an assembled model. Second, we need to minimize the sub-graph adaptation time to
ensure uninterrupted service. In order to keep memory consumption at a minimum, we design our
meta-graph space to share operations between sub-graphs wherever possible (e.g. two sub-graphs
requiring a 3x3x64 convolutional operation at the same layer will use the same meta-graph operation,
and thus have intersecting execution paths). To keep the switching time between models low, we
need to reduce the number of execution path re-routings between sub-graphs to a minimum. Luckily,
we �nd that both of these properties are related based on the observation thatthe number of total
operations meta-graph and the number of path re-routes are inversely proportional to the number of
shared operations. In other words, the more operations that are shared among sub-graphs, the less
number of redundant operations there are and so meta-graph memory size is reduced. At the same
time, more shared operations also means more common execution paths between sub-graphs and so
less number of paths need to be changed while adapting.

We use this observation to develop the custom search policy to generate our adaptive models. Thus
the objective of our sub-graph selection policy can be formally de�ned as the constrained joint
optimization problem -

P � = arg max Eval (A(�; D )) + � (�; A � � ) s:t: fps (�; D ) � F �
min (1)

Here,P is the HR quality metric (i.e. PSNR or SSIM),Eval (A(�; D )) is the PSNR value of SR
output of sub-graph� of meta-graphA on datasetD , � is the number of operations� has shared
with all other sub-graphA � � . fps is the frames-per-second andF �

min is the minimum FPS
allowed under available resource� . Note that� can change over time and can be generalizable
to any type of computational resource even though in our case we mainly demonstrate using the
available processing power. The implementation details are described in detail below.

(a) (b)

Figure 3: Meta-graph with (a) search space and (b) adaptive sub-graph cell architectures. Each cell
is search-able and all layers after 15 are skippable. Four types of upscaling layers can be searched.

Meta-Graph Design. The �rst step in designing a NAS framework is the Meta-graph. This needs
to be diverse enough to generate a wide range of ef�cient candidate architectures with competitive
performance with state-of-the-art. In our case, we focus on designing a meta-graph with a variety of
inference FPS with a good set of PSNR values, rather than developing a single novel cell architecture
that beats all state-of-the-art SR models. We design our meta-graph as a cell-based architecture (as
shown in Figure 3a). The input layer and the last output layer are kept constant, and the architecture
between them consists of layers of cells followed by an upsampling layer. During the search phase,
we sample paths within each searchable cell such that only one type of cell block is chosen at any one
time. Existing works have proposed a wide variety of cell blocks which were demonstrably ef�cient
and have many operations in common, and so we use them for our search space. Speci�cally, we
use the cells from CARN (Ahn et al. (2018)), FALSR (Chu et al. (2021)), RCAB (Zhang et al.
(2018)), AutoGAN (Fu et al. (2020)), WDSR (Yu et al. (2018)), ESRGAN (Wang et al. (2018a))

4



Published as a conference paper at ICLR 2023

and MoreMNAS (Chu et al. (2020)) since they are well-known, ef�cient, self-contained blocks.
Another large bene�t is that all these cell blocks share many of the same operation types, making
it possible for them to share weights. The most commonly shared operations between them are the
convolutional and dense layers. As such, we set their parameter search spaces as:� Convolutional
Filters - 1x1, 3x3, 5x5,� Convolutional Channels - 3, 16, 32, 64,� Dense - 64, 128, 256. Cell
blocks for RCAB, AutoGAN, ESGRAN and FALSR also have attention and residual connections,
which we can enable or disable as paths since we �nd that while their inclusion result in increased
performance, it is not signi�cant at the higher end models when considering the FPS increases.

Layers. The number of layers is one of the most important factors when determining the overall
FPS and is therefore a very important search parameter. Additionally, different layer types perform
distinctly with different layer numbers (Wang et al. (2018a); Ahn et al. (2018); Chu et al. (2021)).
Therefore, we set the range of our number of layers of cells from between 15 to 50 with inter-
vals/groups of 5 for every single cell type. Lastly, for our upscaling layer, we keep the choices be-
tween four types – RCAN (Zhang et al. (2018)), Deconvolutional (Dong et al. (2016)), Depth2Space
(Bhardwaj et al. (2021)) and Multi-branch bicubic (Behjati et al. (2021)). We have a total of number
of possible cell types of 12 when including blocks with and without attention and residual networks
and a total number of parameter combinations of 3 * 4 * 3 = 36, giving us a total number of 12 *
36 = 432 cell combinations. With possible layer combinations of 3 to 10, we have a permutation
formula432P10 + 432P9 + 432P8 + :::432P3 times 4 for the number of possible upscaling layers, which
gives us a total of5:8e1023 possible networks.

Sampling Paths. Given such a large number of possible graphs, we need an ef�cient method for
traversal. Fortunately, our hard constraint of Eq. 1 for FPS can play an important part in reducing the
space here. We �rst start with setting the number of layers to the minimum possible. This is a tunable
hyperparameter, and we �nd that below 15 convolutional layer blocks results in all sub-graphs with
low PSNR value. Therefore, we set it to 15 and start random uniform sampling models without
replacement. We pro�le them on the desired hardware to ensure the FPS is under theFmax . If not,
it is permanently discarded. Once we haveN l models, we move to the next layer limit and iterate
until we have reached the last layer limitI (50 in our current setting) which gives us a total ofN l � I
models. Note that for our scenario, we need multiple models across a wide FPS spectrum. In other
words, we need multiple choices of models for the same dataset deployable for different hardware
and levels of resource availability. Therefore, before starting the training we �rst determine suitable
models bybinning them. We select how many bins of FPS we need asB with each bin having a
window size of 200ms, and we bin our pro�led models within each bin. We then train and evaluate
each model within each bin for 5 epochs and evaluate them which gives us a suf�cient estimate of
�nal model performance. We now need to use an evaluation criteria to rankNb models per bin. For
this method, we set a desired PSNR threshold for binbdecided by the Pareto frontier. For example,
from �gure 8 we see that models on 1080Ti with 20 FPS needs to have at least 34 PSNR to be
competitive, so we select that as the threshold. Then we take all models above that threshold and
rank them based on the number of intersecting operations with others� from Eq.1 We iterate this
process until all binsB haveNb models. This way, we have a total ofNb � B models for exploration.
The parametersN l , Nb andB are very important for determining the search and model ef�ciency
for our framework and their choice is discussed later in Section 5. We throw out all other models
which are not within the bins and redeploy the meta-graph with only the selected model operations.
This reduces the number of models in the search space drastically and reduces weight sharing which
further alleviates the co-sharing issue.

Training. After reducing the search space toNb � B models, we then train them till convergence.
As mentioned above, we perform GAN training. Our predictor models are the searched models and
for our discriminator we use the pre-trained VGG-16 model. We use the Adam optimizer with loss
function for the generator de�ned as -

lgen = 1e2 � j xhr � G(x lr )j + lvgg (G(x lr ); xhr ) + (5 e� 3 � mean(D(G(x lr )))) (2)

wherexhr andx lr are the HR and LR images respectively,G is the generator network,lvgg is the
VGG loss (Wang et al. (2018b)) andD is the discriminator.

4.2 ADAPTIVE SUB-GRAPHS

Standard implementations employ static graphs with �xed inputs and outputs pre-set between oper-
ations and are not changed during forward passes. As a result, traditionally designed meta-graphs

5



Published as a conference paper at ICLR 2023

cannot change operation sequences in real time. Instead, they have to reroute the batches among
different model inputs for inference.

For our case, we have a single large model in the form of a meta-graph. It contains sub-graph
architectures which share operations. In order to switch between sub-graphs, we can change the
input-output paths for the operations. We take advantage of the non-static graph property to imple-
ment this. We �rst de�ne the sub-graphs as a network with the nodes representing the operations and
the input-output variables as the end-point for paths between them. We store each of the meta-graph
operations as node objects with its input and output variable references within. During inference, we
can change the input/output variables of one operation node to point to and from another node. This
effectively decides the execution path of the input batch, thereby de�ning the sub-graph architecture
itself. Since we have all the operations with their trained weights loaded in memory, we can call
every available operation with our desired input values at any time. Thus, when we want to exe-
cute a speci�c sub-graph path, we start by �rst selecting the required operations from the list of all
operation nodes. We then create the sub-graph architecture by routing the output variables (which
are pointers to Tensors in memory) of one operation to the input of the next desired operation by
changing the variable references. We can do this by applying the equal operation of the output vari-
able of one operation node to the input variable of the next operation node, which essentially links
them together into a direct execution path. Since we can set the output pointer variables to the input
variables at any time between forward passes without disrupting the computation results, we can
re-route paths at a per-batch granularity. Thus, by changing the pointer variables of input-outputs,
we can select sub-graphs architectures as per our requirements. This allows us to adapt between
sub-graphs in real-time without degrading QoS.

4.3 MODEL ADAPTATION POLICY

Algorithm 1 Model Selection Policy
Inputs: Meta-graph after trainingA � , CPU/GPU utilization %� at timec, maximum allowed
FPSFmax , empty pro�le tableT, � sel is the list of sub-graphs that meet the selection criteria in
descending order.
for each� i in A � do

for each� j do
Ti;j = Prof ile (� i ; � j )

end for
end for
while T rue do

� c = CurrentResources() , � sel = []
for each� i in A � do

if Ti;c � Fmax then
� sel += � i

end if
end for
� sel = Sort(� sel ) based on max PSNR
Switch to model� sel [0]

end while
returnNone

We design an adaptation policy to decide the model adaptation strategy in real time for a given re-
source availability. This is done in two steps. First, we generate a pro�ling table which contains the
frame rate of each model under different resource availability (e.g., utilization) for a device. We pro-
�le each model using 20 image frames and use the average latency to infer frame rate. The pro�ling
cost isno: of models � resource availability granularity . This step is a one-time of�ine effort
and thus the pro�ling cost is not a major overhead. During the real-time SR task, we keep track
of the resource availability of system via resource monitoring tools. Once we observe a change in
resource availability, we adapt the model by using the search criteria� sel wherefps (� sel ) � Fmax
and sort the candidates based on their performance. We use the adaptive sub-graph mechanism to
select the top performing sub-graph and switch to it in real time to maintain QoS. The algorithm
is constantly running while the application is active. It does not output any speci�c variable, but
constantly controls the switch between sub-graphs (see Alg. 1 for details).

6



Published as a conference paper at ICLR 2023

5 EVALUATION
Model # of Params. Chkpt. Size

Assembled 11.3M 88MB
DySR 8.44M 67MB

Hardware FLOPS Freq.
Snapdragon 855 899G 2.8 GHz
Intel i5-560M 388G 2.9 GHz
Nvidia 1080Ti 11.3T 1.4 GHz
Nvidia A100 312T 1.3 GHz

Figure 5: Model and hardware device speci�cation comparison. Checkpoint Size is the size of the
�le on disk of the trained weights stored by Pytorch via its checkpointing mechanism

5.1 TRAINING SETUP

We implementDySRusing PyTorch and perform the search and training using 4 A100 GPUs, taking
21 GPU days to complete per run. During the deployment, we perform a quick pro�ling (e.g., a few
steps of forward passes) on the target device (e.g. Snapdragon 855) to measure its inference latency
and create a pro�led database. We then change our adaptation based on the expected inference la-
tency from this pro�le. For training the searched models till convergence, we use Div2K training
dataset with 64x64 patch size, batch size of 16 and learning rate of 0.0043. For the search param-
eters, we use the values 15, 2 and 5 forN l , Nb andB respectively. For the video super-resolution
dataset, we train with Vimeo90k (Xue et al. (2019)). The LR images and frames were generated by
bi-cubic downsampling them by a factor of 2 and 4. To generate the Pareto Optimality curve, we
use the the models as shown in Figure 6a).

5.2 BASELINES AND PARAMETERS

(a) (b)

Figure 6: (a) State-of-the-art model's PSNR vs. FPS. Used to generate the Pareto curve determining
the optimal trade-offs. Shown here for Div2K dataset run with 1080Ti for 2x scale. (b) Comparison
of RAM consumption forAssembled, Static (CARN) andDySRwith different numbers of sub-
graphs generated by theNb andB parameters. It is calculated as the sum of memory used for both
model and activation (i.e., intermediate results).

We now describe our choice of baselines and search parameters. Since no other papers (to our
knowledge) address this problem in the SR scope, we create our baseline model by combining all the
models from Figure 6a (referred to asAssembled). It contains high-performing models over a wide
FPS spectrum including the NTIRE 2022 Ef�cient Super-Resolution Challenge (Li et al. (2022))
winner ByteESR (Kong et al. (2022)). OurDySRshould ideally generate similar models and so
makes for a fair comparison. As mentioned above, the parametersNb andB are very important
in determining the quality of the models. Together they determine the total number of sub-graphs
generated which in turn determines the amount of memory taken up by the meta-graph. It also
indirectly determines how much weight is shared by the sub-graphs (more sub-graphs means more
chances of operations being shared). In Figure 6b we show the memory consumed when executing
DySR, Assembled and the single static CARN model after applying dynamic 8-bit quantization for
all of them (Pagliari et al. (2018)). As we tune theNb andB , we get 5, 10, 15 and 20 models (no.
of models =Nb � B ). We see that even with 15 models,DySRhas almost equal consumption to
Assembled due to weight sharing among sub-graphs. With 5 models,DySRconsumes around twice
as much memory compared to the single model, illustrating the memory ef�ciency of our weight-
shared NAS system. Since Assembled contains 10 models, we select 10 models for ourDySRas
well for fair comparison for the rest of the experiments. Table 4 shows that with equal number of
models, our framework has less number of parameters and size on disk.

5.3 PARETO OPTIMALITY

We now test our searched and fully trained sub-graphs against state-of-the-art models. Figure 7
shows the PSNR vs. FPS performance of each of the 10 sub-networks inDySRfor different datasets.

7




	Introduction
	Related Works
	Motivations and Challenges
	Algorithm and System Co-design: DySR
	Adaptation-aware One-shot Neural Architecture Search
	Adaptive Sub-Graphs
	Model Adaptation Policy

	Evaluation
	Training Setup
	Baselines and Parameters
	Pareto Optimality
	Dynamic Resource Adaptivity

	Conclusion
	Acknowledgements
	Appendix
	Visual Comparison


