
Introduction File Storage Server

Message Broker

Client

Queue

Load Balanced Workers

Worker

Worker

Worker

Load Balanced Worker NodesFile Server

Database

Worker Node
Worker

Container

Container

Conclusion

When a student submits a job to RAI, the project directory gets
uploaded to a �le server. Upon job completion, the worker node’s
output directory is also uploaded to the �le server
and is available to download. This way students
have access to any output or logging �les the sub-
mission generates. The �le server is also used by in-
structors to download all �les tagged as �nal project
submissions. RAI supports any �le storage server
which is AWS S3 compatible.

The message broker arbitrates communication between clients
and workers to maintain fairness and resiliency for submissions.
Workers and clients connect and subscribe to a distributed queue
system on the broker. Both the RAI clients and workers sub-
scribe to the message broker and exchange messages
using a publish/subscribe communication pattern.
Messages and queues can be ephemeral and delet-
ed once a timeout occurs. RAI can be con�gured
to use broker and queue servers such as AWS
SQS, AWS SNS, RabbitMQ, and NSQ.

The RAI client is an executable downloaded by the students and
runs on the students’ machines. The executable requires no library
dependencies and works on all the main operating systems and
CPU architectures. Both features reduce the likelihood that stu-
dents will have technical di�culties running the client. Students
use the RAI client to interact with the system and to submit jobs.

RAI clients require authentication keys that uniquely identify the
user to run. Authentication keys are generated by teaching sta�
through a companion utility.

The success of GPU-enabled machine learning applications has led the GPU
programming classes at the University of Illinois to incorporate open-ended
machine-learning projects. Students may

Modify compiler invocations

Use pro�ling tools

Use debugging tools

Depend on arbitrary software

Write tools for managing data

Have control over execution time

RAI is an open-source GPU programming system that realizes these objec-
tives to be met in a cost-e�ective, scalable, and secure way.

Features & Bene�ts

Client
A database, stores meta-information such as execution times, submissions, runtimes, and

logs. The information in this database is useful for grading or any other coursework
auditing process. The database is also used to store team ranking if the class proj-
ect is a competition. RAI supports relational and NoSQL databases such as MySQL,
PostgreSQL, MongoDB, and AWS Dynamo.

RAI: A Scalable GPU Submission System for Machine Learning Applications

Database

Security
To isolate student environments, RAIcreates unique, virtualized, transient
Docker containers for each submission.

Con�gurability
To provide as much �exibility as full system access, RAI accepts bash com-
mands, and non-interactive applications may be executed within user de-
�ned containers.

Scalability and Cost
Large classes and deadlines create bursty system loads, RAI scales-out
worker nodes only as needed to reduce costs. It can also be con�gured to
utilize local clusters with expasion to cloud resources during bursts.

Abdul Dakkak , Carl Pearson , Cheng Li , Wen-mei Hwu
Department of Computer Science ,

Department of Electrical and Computer Engineering ,
University of Illinois at Urbana-Champaign

1 1

1
2

2 2

The RAI worker acts as an agent that runs submitted code in
Docker containers. To maximize con�gurability, the
submitted jobs can specify arbitrary Docker�les as
the container. The worker can be used with and with-
out the nvidia-docker volume plugin.

The RAI worker acts as an agent that starts a sandboxed environment to execute stu-
dents’ code. Multiple worker nodes can exist within the RAI environment, thus

making the system elastic and scalable. Because of current limitations of
Docker GPU integration, the worker must run on a Linux system.

For security and isolation, Docker containers may be given
restricted access to CPU, memory, �lesystem, and net-

working resources. The sysadmin may also choose
which Docker images are allowed to be used

on the worker.

RAI is a scalable job submission system designed for machine-learning and other CPU and
GPU workloads. RAI’s design addresses challenges of scalability, con�gurability, security,
and cost in delivering a �exible parallel programming environment. RAI has been used to
o�er two machine-learning projects and a wide variety of other submissions in GPU pro-
gramming courses at the University of Illinois Urbana-Champaign.

Accessibility
Since remote students do not have access to physical computing facilities,
GPUs, or esoteric programming environments, RAI provides Windows,
Linux, or macOS clients to develop machine learning applications over the
internet.

