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GPU Consumes

15.7 TFLOP FP32

31.4 x 1012 operands/s

Host Produces

15.8 GB/s over PCIe

3.95 x 109 operands/s

Why GPU Interconnect Bandwidth?
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~8000 FP32 operations per operand transferred

or

~2000 FP32 operations per byte transferred

Nvidia V100 attached by PCIe 3



CUDA data transfer 

bandwidth depends on 

allocation and transfer 

method

Microbenchmarks for all CUDA 

communication methods

Avoid synchronization overhead 

from measurements

Challenges and Contributions
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Incomplete System 

Characterization

Challenge Bad Result Comm|Scope Solution
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Variability across 

measurements

Explore effect of system topology

Understand and control non-

CUDA system parameters during 

measurements

Complicated API 

behavior and system 

interaction

Open-source, cross-platform, 

error reporting, plotting results

Incomplete System 

Characterization

Reinventing the 

wheel and repeating 

mistakes

Bandwidth influenced 

by non-CUDA knobs 

and system topology

Challenge Bad Result Comm|Scope Solution



▪ Explicit transfers

▪ Peer Access

▪ “Zero-Copy”

Comprehensive Coverage of CUDA Bulk Transfers
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▪ Unified Memory

▪ Unidirectional Transfers

▪ Bidirectional Transfers

Local Storage

Component Component

Local Storage

Data Transfer

Communication Path



▪ Not all cudaMemcpy created 

equal on high-bandwidth 

interconnects

Non-CUDA Parameter: NUMA Pinning
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CPU

“remote”
GPU

CPU

“local”
GPU

Configuration (Limiter) Theoretical 
(GB/s)

Observed 
(GB/s)

AC922 Local (3x NVLink 2) 75 66.6 ± 0.013

AC922 Remote (X-bus) 64 41.3 ± 0.009

S822LC Local (2x NVLink 1) 40 31.9 ± 0.008

S822LC Remote (x-bus) 38.4 29.3 ± 0.013

4029GP Local (PCIe 3) 15.8 12.4 ± 0.0002

4029GP Remote (PCIe 3) 15.8 12.4 ± 0.0002

1GB pinned host allocation transferred 
to GPU 



▪ Variable CPU Clock Speeds

$ cpupower frequency-set --governor performance

▪ CPU Data Caching

Non-CUDA Parameters
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// arch/x86/include/asm/special_insns.h

void flush(void *p) {
asm volatile("clflush %0"

: "+m"(p)
: // no inputs
: // no clobbers

);
}

// linux/arch/powerpc/include/asm/cache.h

void flush(void *p) {
asm volatile("dcbf 0, %0"

: // no outputs
: "r"(p)
: "memory”

);
}



Pinned Allocation and cudaMemcpy

9

GPU MemoryCPU DRAM

▪ GPU does DMA to access pinned data on CPU

GPU MemoryCPU DRAM

cudaMemcpy( … , cudaMemcpyHostToDevice) cudaMemcpy( … , cudaMemcpyDeviceToHost)



cudaMemcpy & CPU Cache
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▪ CPU writes values to initialize data

▪ For small allocations, data may reside entirely in cache

GPU MemoryCPU DRAM

cudaMemcpy( … , cudaMemcpyHostToDevice) cudaMemcpy( … , cudaMemcpyDeviceToHost)

CPU Cache

Dirty data 
from cache

GPU MemoryCPU DRAM

CPU Cache



cudaMemcpy & CPU Cache
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▪ Flushing the cache forces 

data to start in the DRAM

GPU MemoryCPU DRAM

cudaMemcpy( … , cudaMemcpyHostToDevice) cudaMemcpy( … , cudaMemcpyDeviceToHost)

CPU Cache

GPU MemoryCPU DRAM

CPU Cache

▪ Flushing the cache 

prevents write-back of 

dirty data



12 GPU MemoryCPU DRAM

CPU Cache

GPU MemoryCPU DRAM

CPU Cache

GPU MemoryCPU DRAM

CPU Cache

GPU MemoryCPU DRAM

CPU Cache

No Flushing

Flushing

Host to GPU GPU to Host

52.14 GB/s

45.20 GB/s 29.40 GB/s

14.91 GB/s

Flushing forces data to start in DRAM, 
slowing transfer

Flushing prevents dirty data from being 
evicted, speeding transfer  

Dirty 
data 
from 

cache



▪ Using Google Benchmark Support Library

– Each benchmark run consists of some number 

of iterations

– The number of iterations is

1 < n < 1e9 and

total time under measurement >= 0.5s

▪ Support synchronous and asynchronous 

operations

▪ Report variability across runs

– High variability suggests not all relevant 

system parameters are fixed

Benchmark Design
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▪ Resetting CUDA devices

▪ NUMA pinning

▪ Creating allocations

▪ Creating CUDA streams and events

▪ Zeroing allocations

▪ Configure CUDA device peer access

Initialization (as needed)
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▪ Move unified memory data to a source 

device

▪ Flush caches

▪ Set CUDA devices

▪ Adjust NUMA pinning

Setup (as needed)
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▪ Timing the data transfer operation

▪ Different approaches for different 

transfer types:

– Synchronous

– Asynchronous

– Simultaneous

Timing Strategies
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▪ An operation that may complete at any time (from the 

perspective of the host)

▪ CUDA API call may return before the operation is complete

Asynchronous Operations
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▪ cudaMemcpy

– CUDA Runtime API §2: “for transfers from pageable host memory 

to device memory…the function will return once the pageable 

buffer has been copied to the staging memory, but the DMA to 

final destination may not have completed”

// wrong
start = std::chrono::system_clock::now()
cudaMemcpy(..., cudaMemcpyHostToDevice)
end   = std::chrono::system_clock::now()

Asynchronous Behavior in Synchronous APIs
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▪ No spurious synchronization costs!

Timing Single Operations
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start wall time

operation

stop wall time

Host Thread
R

e
p

o
rt

e
d

 T
im

e
“start” event

operation

“stop” event

CUDA Stream

R
e

p
o

rt
e

d
 T

im
e

AsynchronousSynchronous



Timing Simultaneous Sync/Async Operations
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Start wall time

Synchronous Operation

cudaStreamSynchronize

stop wall time

Asynchronous 
Operation

Host Thread CUDA Stream

R
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d
 T
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e

Launch async

Unavoidable stream 

synchronization is 

measured



Timing Simultaneous Asynchronous Operations
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Device 0 / Stream 0 Device 1 / Stream 1

“start” event

operation 0

wait

“stop” event

operation 1

“other” event

R
e
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d
 T
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e

Multiple DeviceSingle Device

Device 0 / Stream 0 Device 0 / Stream 1

“start” event

operation 0

“stop” event

operation 1

R
e

p
o

rt
e

d
 T

im
e “start” event

“stop” event

No spurious synchronization costs! Streams synchronization event measured 



IBM S822LC and IBM AC922
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Spec S822LC AC922

CPU 2x IBM POWER 8 2x IBM POWER 9

GPU 4x Nvidia P100 (Pascal) 4x Nvidia V100 (Volta)

CPU ↔ CPU X-bus (38.4 GB/s) X-bus (64 GB/s)

CPU ↔ GPU 2x NVLink 1 (80 GB/s) 3x NVLink 2 (150 GB/s)

GPU ↔ GPU 2x NVLink 1 (80 GB/s) 3x NVLink 2 (150 GB/s)



SuperMicro 4029GP-TVRT
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Spec

CPU 2x Intel Xeon Gold 6148

GPU 8x Nvidia V100 (Volta)

CPU ↔ CPU Intel UPI (62.4 GB/s)

CPU ↔ GPU PCIe 3.0 x16 (31.6 GB/s)

GPU ↔ GPU 1x/2x NVLink 2
(25-50 GB/s)



▪ Low bandwidth PCIe 3.0 on 4029GP hides interesting behavior

No Locality or Anisotropy on PCIe
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cudaMemcpyAsync vs zero-copy CPU/GPU

Unified memory
demand transfers

explicit vs zero-copy CPU/GPU

cudaMemcpyAsync



▪ The implicit pageable-to-pinned copy prevents exploiting fast interconnects

▪ Multiple threads should speed up pageable-pinned copy

– Application could use simultaneous transfers

– CUDA runtime could use multiple worker threads

Pageable Host Allocations and Fast Interconnects
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Transfers 

across 

NVLink 2 

show strong 

locality 

effects

Strong Locality with High Bandwidth Configurations
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cudaMemcpyAsync GPU-GPUcudaMemcpyAsync CPU-GPU

80 GB/s

80 GB/s

80 GB/s



▪ CUDA system software 

limits performance 

available in hardware

– Page faults

– Per-page driver heuristics

▪ Underlying interconnect 

performance not so 

important

Demand Page Migration
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50 GB/s

50 GB/s

50 GB/s



▪ Multiple host threads are needed to make UM faster

Demand Page Migration vs Explicit Tranfer
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50 GB/s

50 GB/s

50 GB/s



▪ Implicit, like unified 

memory

▪ Unlike unified 

memory, can achieve 

near interconnect 

theoretical bandwidth

Zero-Copy
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80 GB/s

80 GB/s

80 GB/s



▪ Unified memory prefetch is slow at intermediate sizes

Unified Memory Prefetch vs Explicit
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80 GB/s



▪ v0.7.2 released April 8th

▪ Github: c3sr/comm_scope

▪ Docker: c3sr/comm_scope

▪ CUDA 8.0+, CMake 3.12+

▪ x86 and POWER

▪ Apache 2.0 license

▪ Python scope_plot package for plotting results

Open-source & Docker
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▪ Unified Memory Microbenchmarks

– Access patterns & driver heuristics

▪ System-aware CPU/GPU and GPU/GPU data structures

– How to allocate and move data depending on who produces and 

who consumes

• Hints from application or records from previous executions

▪ System health status

– Sanity check during system firmware development or system 

bring-up

Future Work
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▪ Comprehensive coverage of CUDA communication 

methods

▪ Bandwidth affected by CUDA APIs, non-CUDA system 

knobs, system topology

▪ High-bandwidth interconnects expose idiosyncracies of 

hardware/software system

▪ Open-source, cross-platform, artifact evaluation stamp

Conclusion
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Thank you / Questions

pearson@illinois.edu

https://cwpearson.github.io

Other C3SR System Performance Research Projects
System microbenchmarks: https://scope.c3sr.com

Full-stack machine learning with tracing: https://mlmodelscope.org
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