
TOPS: Accelerating Reduction Using Tensor Core Units

Map Reduction onto TCUs

Motivation

Abdul Dakkak*, Cheng Li*, Jinjun Xiong†, Wen-Mei Hwu*
{dakkak, cli99, w-hwu}@illinois.edu, jinjun@us.ibm.com

*University of Illinois Urbana-Champaign, †IBM Research Yorktown

• Driven by deep learning, there has been a surge of specialized processors for
matrix multiplication — Tensor Core Units (TCUs), e.g. Nvidia Tensor Cores,
Google’s TPU, Intel KNL’s AVX, Apple A11’s Neural Engine

• TCUs are used to accelerate convolutional (CNN) and recurrent neural networks
(RNN) in deep learning workloads

• TCUs suffer from over specialization — with only general matrix-matrix
multiplication (GEMM) being supported

• This limits their applicability to general algorithms and makes them confined to
narrowly specialized libraries and application domains

In this work, we leverage NVIDIA's TCUs to express reduction show the benefits — in
terms of program simplicity, efficiency, and performance compared to start-of-the-art
reduction methods on the GPU

Figure 2: A simple CUDA kernel performing
<16, 16, 16> matrix multiplication (C = A . B +
C) within a warp in half precision using the
CUDA WMMA API.

• Tensor Cores have been only
used to accelerate GEMM
operations, most prominently
through NVIDIA's CUDA
libraries — cuBLAS [1], cuDNN
[2] and CUTLASS [3]

• NVIDIA also provides a CUDA
C++ Warp Matrix Multiply and
Accumulate (WMMA) API to
program the Tensor Cores
directly

• WMMA only supports warp-
level matrix multiplication with
dimensions <16, 16, 16>, <8,
16, 32>, <32, 16, 8>

Figure 5 Segmented reduction for the algorithms presented on different
segment sizes (between 16 and 230) for a fixed 2^30 element list. The bar on
top of the figure shows the best performing algorithm for each range of
segment sizes.

Evaluation

Figure 4: The work-inefficient Reduction256N algorithm (1)
initializes the Q matrix with all zeros and (2) loads the 256 input
elements into a matrix A in column major order. (3) A dot product
V = P.A + 0 where the P matrix has the first row as ones and the
rest of the values are zeros is performed to reduce each row into
a scalar. (4) the dot product R = V.PT + Q reduces the first row
into a scalar. (5) If the segmented reduction size is equal to the
matrix size (i.e. N = 1) or for the last iteration, then the first
element of the R matrix is stored in the output array, otherwise
(6) the first element of R matrix is used as the first element of
the Q matrix and the procedure is iterated starting from step (2).

Conclusion
Although this work targets GPUs, the motivation, methods, and observations are
applicable to a wide number of TCU implementations and microarchitectures.
Future work would leverage the techniques described to examine the impact of
using TCU collectives on large applications and see what else can be mapped to
utilize the TCUs.
We have identified some candidate primitives that can be mapped: such as
transcendental and special functions.

Figure 1: Each processing block (subcore) in the
NVIDIA Tesla V100 PCI-E architecture contains 2
TCUs. Currently algorithms other than GEMM do not
utilize the TCUs - resulting in low chip utilization.

Nvidia Tensor Cores

29 210 211 212 213 214

M = N = K (log scale)

0

25

50

75

100

H
a
lf

P
re

ci
si

o
n

T
F
L
O

P
S

WMMA HGEMM

WMMA HGEMM (näıve)

cuBLAS HGEMM w/o TCU

cuBLAS HGEMM w TCU

CUTLASS HGEMM

Figure 3: GEMM performance using Tensor Cores on a
V100 PCI-E GPU with a 113 TFLOPS peak performance.
The inputs are square matrices with variable <M , N , K>
dimensions.

• We evaluated the GEMM performance using Tensor Cores through
cuBLAS, CUTLASS (version 0.1.1), and hand written kernels using
the WMMA API

• We see that the matrix-multiplication performance of NVIDIA TCUs is
high enough to tolerate resource and computation waste in
algorithms.

• Driven by this observation, we formulate the mapping between the
widely used reduction collective and TCUs

The current WMMA API provides warp-level matrix
operations for
• matrix load (load_matrix_sync)
• matrix store (store_matrix_sync)
• matrix multiply and accumulate (mma_sync)
These APIs operate on a special thread-local data type (
fragment), which holds a matrix tile in thread-local
registers.

=

0=

AV

R

0

QL
0

1
0 P

s

1
0

PT

1

0

1V
5

2
1

3

4

6

• We evaluated our TCU reduction algorithm against the state-of-the-art
implementation from CUB [5] on different segment sizes for a fixed 230 element list

• Through a combination of the algorithms presented, we are able to achieve within
90% and 98% of ideal throughput

• Our algorithm achieves this while decreasing the power consumption by up to 22%

[1] NVIDIA cuBLAS. https://developer.nvidia.com/cublas.
[2] NVIDIA cuDNN. https://developer.nvidia.com/cudnn.
[3] NVIDIA CUTLASS. https://devblogs.nvidia.com/cutlass-linear-
algebra-cuda.
[4] NVIDIA Tensor Cores. https://www.nvidia.com/en-us/data-
center/tensorcore.
[5] D Merrill. CUB v1.8.0: CUDA Unbound, a library of warp-wide,
blockwide, and device-wide GPU parallel primitives. NVIDIA Re-
search, 2018.

References

We developed a library
of warp-, block-, and
grid-level primitives
which can be auto-
tuned for different
architectures and will
plan on releasing in the
near future

Contact me at dakkak@illinois.edu

Load/Store SPU

Registers
Control
Cache

INT FP64 FP32 TCUTCU

