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Background

" Machine Learning (ML) models are used in many application
domains

" Understanding ML inference performance is an increasingly
pressing but challenging task

Slow adoption of DL innovations



ML Model

A graph where each vertex is a layer (or operator) and an edge represents data transfer
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ML Inference Pipeline

Input Image Pre-processing Prediction Post-processing

- Image decoding | Input .| output . . Topl
- Resizing Tensor | Model prediction Tencor Unpacking into pairs

L using p—) (|abel, probabilities) =P (dog, 0.99)
- Normalization ,
. framework API and sorting
- Type conversion




XSP Motivation
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XSP Motivation
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Current DL Profiling on GPUs

Using code insertion

Using nvprof or Nsight (

One has to manually perform the
difficult task of correlating these
disjoint profiles
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Model-, layer-, and GPU kernel-level profiles of MLPerf ResNet50 v1.5
with batch size 256 on a Volta GPU



An Approach - Modifying Frameworks

" NGC frameworks (TensorFlow, PyTorch, etc.) are instrumented
with NVTX markers

— GPU profile with layer annotations, lacks framework profiling

— May inhibit frameworks from performing some optimizations

— Does not work for DL models that use customized frameworks
" TensorFlow profiler

— framework profile with some GPU profiling

— Does not work for other frameworks

" Vendor lock-in & limited applicability



XSP: Across-stack Profiling

" |ncorporates profile data from different sources to obtain a
holistic and hierarchical view of DL workloads

— Innovatively leverages distributed tracing

= Accurately captures the profiles at each HW/SW stack level
despite the profiling overhead

— Leveled experimentation methodology

" Coupled with an automated analysis pipeline

= Reveals insights that would otherwise be difficult to discern



Distributed Tracing

" Designed to monitor distributed applications (e.g. microservices)

= Key Concepts

— Span: a named, timed operation representing a piece of the workflow
e Start & end timestamps

* Tags & Logs: key-value pairs of user-defined annotation or logging messages for
spans

e SpanContext: a state to refer to a distinct span

— Trace: a tree of spans
— Tracer: an object that creates and publishes spans

I



An Example
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Leveraging Distributed Tracing in XSP

HW/SW Stack Tracers

= Observe the similarity between Level 0
profiling and distributed tracing (user-code) @ et

" Turn profilers into tracers

Level 1 Tracer 1

= Convert profiled events into

SPans Level 2 @ @ @ Tracer 2, 3

= Multiple tracers can exist within
a stack level

. Tracer 0 e
Tracers can be enabled/disabled Events

Level N Tracer M

Tracer 3
Events

Tracer 2
Events

Tracer 1
Events

XSP Design
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Constructing Parent/Child Relationships

" Tracers use the system clock

= Spans are time intervals and assigned with levels
" During the profile analysis, check interval inclusion

— If interval s1 contains interval s2 and sl is a level higher than s2, then s1
is a parent of s2

» Time

Spans —

Time Interval Inclusion




Capturing Asynchronous Events

= E.g. Asynchronous GPU kernel launches

= Capture both the kernel launch and execution spans
— Use the kernel launch span to figure out the parent span

— Use the kernel execution span to get performance information or figure
out its children spans

» Time

Conv
cudalaunchKernel 4 ----- kernel execution




Capturing Parallel Events

= E.g. Two conv layers overlap, and each invokes GPU kernels

= Serialize the conv layers to get their correlations to GPU kernels
= Or more complex post-processing

" Time

model

convli =
conv2z .

Two conv layers overlap




XSP for ML Inference on GPUs

No change to DL
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M: Model-level Profiling L: Layer-level Profiling G: GPU Kernel-level Profiling
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M: Model-level Profiling L: Layer-level Profiling G: GPU Kernel-level Profiling
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Automated Across-stack Analysis

(]

The 15 analyses performed by XSP using profiles from one or more levels

Model-level profiling
Framework-level profiling
GPU-level profiling

Profiling  End-to-End  Framework NVIDIA
Analysis Provider Benchmarking  Profilers  Profilers XSP
Model throughput and latency M v X X v
Layer information L X v X v
Layer latency L X v X v
Layer allocated memory L X v X v
Layer type distribution L X v X v
Layer aggregated latency L X v X v
Layer aggregated allocated memory L X v X v
GPU information G X X v v
GPU roofline G X X v v
GPU aggregated information G X X v v
Layer aggregated GPU information L/G X X X v
Layer aggregated GPU metrics L/G X X X v
GPU vs CPU latency L/G X X X v
Layer roofline L/G X X X v
Model roofline M/L/G X X v v




Exa m p I e An a IyS I S https://ipdps20.netlify.com/tensorflow/mlperf resnet50 v1.5/

The top 5 most time-consuming GPU kernel invocations
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XSP Extensibility
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Conclusion

= XSP is an across-stack profiling design that aggregates profile
data from different sources and correlates them to construct a
holistic and hierarchical view of ML model execution

— A smooth hierarchical step-through of model performance at different
levels within the HW/SW stack to identify bottlenecks

— Systematic comparisons of models, frameworks, and hardware through
the consistent profiling and automated analysis workflows

— Extensible to accommodate different use cases
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