XSP: Across-Stack Profiling and Analysis of Machine Learning Models on GPUs

Cheng Li*¹, Abdul Dakkak*¹, Jinjun Xiong², Wei Wei³, Lingjie Xu³, Wen-mei Hwu¹ University of Illinois Urbana-Champaign¹, IBM Research², Alibaba Group³ {cli99, dakkak, w-hwu}@illinois.edu, jinjun@us.ibm.com, {w.wei, lingjie.xu}@alibaba-inc.com

Video: https://youtu.be/v95JfmM66eE

Background

- Machine Learning (ML) models are used in many application domains
- Understanding ML inference performance is an increasingly pressing but challenging task

Slow adoption of DL innovations

ML Model

A graph where each vertex is a layer (or operator) and an edge represents data transfer

ML Inference Pipeline

XSP Motivation

- A holistic view of the model execution is needed
- Existing profiling tools are disjoint
 - Profiling at different granularities means switching between tools
 - No correlation between profiles

Levels of the HW/SW stack

XSP Motivation

- Inference is impacted by the interplay between levels of the HW/SW stack
- Any of them can be a bottleneck

Levels of the HW/SW stack

Current DL Profiling on GPUs

One has to manually perform the difficult task of correlating these disjoint profiles

Model-, layer-, and GPU kernel-level profiles of MLPerf ResNet50 v1.5 with batch size 256 on a Volta GPU

An Approach - Modifying Frameworks

- NGC frameworks (TensorFlow, PyTorch, etc.) are instrumented with NVTX markers
 - GPU profile with layer annotations, lacks framework profiling
 - May inhibit frameworks from performing some optimizations
 - Does not work for DL models that use customized frameworks
- TensorFlow profiler
 - framework profile with some GPU profiling
 - Does not work for other frameworks
- Vendor lock-in & limited applicability

XSP: Across-stack Profiling

- Incorporates profile data from different sources to obtain a holistic and hierarchical view of DL workloads
 - Innovatively leverages distributed tracing
- Accurately captures the profiles at each HW/SW stack level despite the profiling overhead
 - Leveled experimentation methodology
- Coupled with an automated analysis pipeline
- Reveals insights that would otherwise be difficult to discern

Distributed Tracing

- Designed to monitor distributed applications (e.g. microservices)
- Key Concepts
 - Span: a named, timed operation representing a piece of the workflow
 - Start & end timestamps
 - Tags & Logs: key-value pairs of user-defined annotation or logging messages for spans
 - SpanContext: a state to refer to a distinct span
 - Trace: a tree of spans
 - Tracer: an object that creates and publishes spans

An Example

Host 0

Application

Host 1

Leveraging Distributed Tracing in XSP

- Observe the similarity between profiling and distributed tracing
- Turn profilers into tracers
- Convert profiled events into spans
- Multiple tracers can exist within a stack level
- Tracers can be enabled/disabled

XSP Design

Constructing Parent/Child Relationships

- Tracers use the system clock
- Spans are time intervals and assigned with levels
- During the profile analysis, check interval inclusion
 - If interval s1 contains interval s2 and s1 is a level higher than s2, then s1 is a parent of s2

Capturing Asynchronous Events

- E.g. Asynchronous GPU kernel launches
- Capture both the kernel launch and execution spans
 - Use the kernel launch span to figure out the parent span
 - Use the kernel execution span to get performance information or figure out its children spans

Capturing Parallel Events

- E.g. Two conv layers overlap, and each invokes GPU kernels
- Serialize the conv layers to get their correlations to GPU kernels
- Or more complex post-processing

XSP for ML Inference on GPUs

No change to DL frameworks or libraries

Global Tracer:

User inserts tracing API (startSpan & finishSpan) to capture code sections

Framework Tracer:

Built on top of the framework profiling capability to capture layer level information

GPU Tracer:

Built on top of CUPTI to capture CUDA runtime API, GPU activities, GPU metrics

Model-, layer-, and GPU kernel-level profiles of MLPerf ResNet50 v1.5 with batch size 256 on a Volta GPU

Dealing with Profiling Overhead

- Profiling always comes with overhead
- XSP uses leveled experimentation to get accurate timing for all levels

M: Model-level Profiling L: Layer-level Profiling G: GPU Kernel-level Profiling

Leveled Experimentation

Profilers at level n
 accurately capture events
 at level n

 Use traces from runs with different profiling levels enabled

- Overhead_n = $Profile_{0/.../n} - Profile_{0/.../n-1}$

Automated Across-stack Analysis

M: Model-level profiling

.: Framework-level profiling

G: GPU-level profiling

The 15 analyses performed by XSP using profiles from one or more levels

	Analysis	Profiling Provider	End-to-End Benchmarking	Framework Profilers	NVIDIA Profilers	XSP
A1	Model throughput and latency	M	✓	×	Х	√
A2	Layer information	${f L}$	×	✓	X	✓
A3	Layer latency	${f L}$	×	✓	X	✓
A4	Layer allocated memory	${f L}$	×	✓	X	✓
A5	Layer type distribution	${f L}$	×	✓	X	✓
A6	Layer aggregated latency	${f L}$	×	✓	X	✓
A7	Layer aggregated allocated memory	${f L}$	×	✓	X	✓
A8	GPU information	\mathbf{G}	×	×	✓	✓
A9	GPU roofline	\mathbf{G}	×	×	✓	✓
A10	GPU aggregated information	\mathbf{G}	×	×	✓	✓
A11	Layer aggregated GPU information	L/G	×	×	X	✓
A12	Layer aggregated GPU metrics	L/G	×	×	X	✓
A13	GPU vs CPU latency	L/G	×	×	X	✓
A14	Layer roofline	L/G	×	×	X	✓
A15	Model roofline	M/L/G	×	X	✓	✓

Example Analysis

https://ipdps20.netlify.com/tensorflow/mlperf_resnet50_v1.5/

The top 5 most time-consuming GPU kernel invocations

18	Kernel Name	Layer Index	Layer Kernel Latency (ms)	Kernel Gflops	Kernel DRAM Reads (MB)	Kernel DRAM Writes (MB)	Kernel Achieved Occupancy (%)	Kernel Arithmetic Intensity (flops/byte)	Kernel Arithmetic Throughput (Tflops/s)	Memory Bound?
	volta_cgemm_32x32_tn	221	6.04	77.42	40.33	43.86	12.18	876.97	12.82	×
	volta_cgemm_32x32_tn	208	6.03	77.42	43.93	43.81	12.19	841.59	12.83	×
	volta_scudnn_128x128_relu_interior_nn_v1	195	5.48	59.20	27.71	8.40	15.49	1,563.30	10.80	×
	volta_scudnn_128x64_relu_interior_nn_v1	3	4.91	62.89	11.55	283.05	13.20	203.58	12.81	×
	volta_scudnn_128x128_relu_interior_nn_v1	57	4.56	59.24	34.83	37.64	15.15	779.55	12.99	×

XSP Extensibility

- Other profiling tools or methods can be integrated
 - More tracers at each stack level, e.g.
 CPU+GPU
 - Capture more stack levels, e.g. ML
 library level and application level
 - Work with accelerators and simulators
- Add more types of analyses
- Add ML training support

Conclusion

- XSP is an across-stack profiling design that aggregates profile data from different sources and correlates them to construct a holistic and hierarchical view of ML model execution
 - A smooth hierarchical step-through of model performance at different levels within the HW/SW stack to identify bottlenecks
 - Systematic comparisons of models, frameworks, and hardware through the consistent profiling and automated analysis workflows
 - Extensible to accommodate different use cases

Thank you

More information in the paper

Cheng Li*¹, Abdul Dakkak*¹, Jinjun Xiong², Wei Wei³, Lingjie Xu³, Wen-mei Hwu¹ University of Illinois Urbana-Champaign¹, IBM Research², Alibaba Group