XSP: Across-Stack Profiling and Analysis
of Machine Learning Models on GPUs

Cheng Li*, Abdul Dakkak*?, Jinjun Xiong?, Wei Wei3, Lingjie Xu3, Wen-mei Hwu?

University of lllinois Urbana-Champaign?, IBM Research?, Alibaba Group3

{cli99, dakkak, w-hwu}@illinois.edu, jinjun@us.ibm.com, {w.wei, lingjie.xu}@alibaba-inc.com

Video: https://youtu.be/v95JfmM66eE

https://youtu.be/v95JfmM66eE

Background

" Machine Learning (ML) models are used in many application
domains

" Understanding ML inference performance is an increasingly
pressing but challenging task

Slow adoption of DL innovations

ML Model

A graph where each vertex is a layer (or operator) and an edge represents data transfer

Relu Padfing Pooling Example: ResNet50
o * BN >_/ > P > 1 2 2 3 4 4 4 5 6 6 6 6 6 7 8 8 P F > s o
— ~ / N
Convolution BatchNorm Fully Connected Softmax

Module 1 Module 2

256x56x56

256x56x56

Module 3 Module 4

512x28x28

512x28x28

Module 5 Module 6

1024x14x14

1024x14x14

ML Inference Pipeline

Input Image Pre-processing Prediction Post-processing

- Image decoding | Input .| output . . Topl
- Resizing Tensor | Model prediction Tencor Unpacking into pairs

L using p—) (|abel, probabilities) =P (dog, 0.99)
- Normalization ,
. framework API and sorting
- Type conversion

XSP Motivation

[
© Pre-proess Predict Post-process
L. . § Input _T Model T Output
= A holistic view of the model Z_________ R
execution is needed £ —[Cowl[Bes p[Rou}— T .
. . - % Data Concatp»| FC E
" Existing profiling tools are £ f
... E —| Conv || Bias | Relu
disjoint T T TSI I
— Proflllng at different Malloc || CUDNN || Transpose || CUDNN || Free)
granularities means = TR
Switching between tools -'(T>).. cudaMalloc —» ConvKernel cudaFree
I e \‘""“"==::::::::_':‘
— No correlation between 7 [fop DRAM | [DRAM |
] 5 count SP Read Write ;
profiles e

Levels of the HW/SW stack

XSP Motivation

[
© Pre-proess Predict Post-process
L. § Input _T Model T Output
" Inference is impacted by T .
the interplay between £ —[Cowl[Bes p[Rou}— T \
= E
levels of the HW/SW stack & | [Daa Corealf T i
© ——| Conv | Bias | Relu J
- Any Of t h em Can b €ed _u; o TTT e
bOttleneCk ; Malloc | CUDNN || Transpose || CUDNN | Free
£ ’ TR
"¢7>>\ cudaMalloc | ConvKernel | cudaFree
I e \""“‘“::::::::::‘
[Tiop DRAM | [DRAM |
count SP Read Write

..

Levels of the HW/SW stack

Current DL Profiling on GPUs

Using code insertion

Using nvprof or Nsight (

One has to manually perform the
difficult task of correlating these
disjoint profiles

!: @ Model

@ Layer
Using framework profiler i

€ GPU Kernel

Input Model Output
P > > P
Pre-Process | | Inference | | Post-Process
T T TSI
Data | Conv | BN | Relu []....>| SoftMax
‘-----’-_-_-'""—— -‘----------_°°—!ﬂ.—.- ----------------------------------
- --.-w.-“~\
]
Kernell Kernel2 Kernel3 |
Name=ShuffleTensor | | Name=OffsetComp Name=VoltaCUDNN_128x64 i
Grid=[10,1,1] Grid=[99,1,1] Grid=[99,1,1] !
Block=[1024,1,1] Block=[1024,1,1] Block=[256,1,1] i
]

-
g g g g g g g g g g

-
-
-

-

GPU Metrics

SP Flop Count=62GFlop
DRAM Read Bytes=12.1MB
DRAM Write Bytes=296MB

Achieved Occupancy=13.2%

-
S
S
-
S
-

__

Model-, layer-, and GPU kernel-level profiles of MLPerf ResNet50 v1.5
with batch size 256 on a Volta GPU

An Approach - Modifying Frameworks

" NGC frameworks (TensorFlow, PyTorch, etc.) are instrumented
with NVTX markers

— GPU profile with layer annotations, lacks framework profiling

— May inhibit frameworks from performing some optimizations

— Does not work for DL models that use customized frameworks
" TensorFlow profiler

— framework profile with some GPU profiling

— Does not work for other frameworks

" Vendor lock-in & limited applicability

XSP: Across-stack Profiling

" |ncorporates profile data from different sources to obtain a
holistic and hierarchical view of DL workloads

— Innovatively leverages distributed tracing

= Accurately captures the profiles at each HW/SW stack level
despite the profiling overhead

— Leveled experimentation methodology

" Coupled with an automated analysis pipeline

= Reveals insights that would otherwise be difficult to discern

Distributed Tracing

" Designed to monitor distributed applications (e.g. microservices)

= Key Concepts

— Span: a named, timed operation representing a piece of the workflow
e Start & end timestamps

* Tags & Logs: key-value pairs of user-defined annotation or logging messages for
spans

e SpanContext: a state to refer to a distinct span

— Trace: a tree of spans
— Tracer: an object that creates and publishes spans

I

An Example

—-—— e o o = o= o)

{context}

Tracing Workflow

g
I Application

Timeline
An application with services (A, B, C,

*» Time

Spans <

D, E, F) that have causal relationships

I

Leveraging Distributed Tracing in XSP

HW/SW Stack Tracers

= Observe the similarity between Level 0
profiling and distributed tracing (user-code) @ et

" Turn profilers into tracers

Level 1 Tracer 1

= Convert profiled events into

SPans Level 2 @ @ @ Tracer 2, 3

= Multiple tracers can exist within
a stack level

. Tracer 0 e
Tracers can be enabled/disabled Events

Level N Tracer M

Tracer 3
Events

Tracer 2
Events

Tracer 1
Events

XSP Design

I

Constructing Parent/Child Relationships

" Tracers use the system clock

= Spans are time intervals and assigned with levels
" During the profile analysis, check interval inclusion

— If interval s1 contains interval s2 and sl is a level higher than s2, then s1
is a parent of s2

» Time

Spans —

Time Interval Inclusion

Capturing Asynchronous Events

= E.g. Asynchronous GPU kernel launches

= Capture both the kernel launch and execution spans
— Use the kernel launch span to figure out the parent span

— Use the kernel execution span to get performance information or figure
out its children spans

» Time

Conv
cudalaunchKernel 4 ----- kernel execution

Capturing Parallel Events

= E.g. Two conv layers overlap, and each invokes GPU kernels

= Serialize the conv layers to get their correlations to GPU kernels
= Or more complex post-processing

" Time

model

convli =
conv2z .

Two conv layers overlap

XSP for ML Inference on GPUs

No change to DL

Global Tracer: l frameworks or libraries
User inserts tracing API © Model nput— | [Model | [Output
(sta rtspan & finishSpan) to Pre-Procesi ______ Inference | | Ii’ .o_sit:ir.ocess
capture code sections g [— |
e Layer i Data || Conv [| BN || Relu [|..[> SoftMax i
Framework Tracer: |> T I |
Built on top of the framework Kernel] Kernel2 Kernel3
profiling capability to capture © GPU Kernel | [“eatonn || artsonn || " cnmcioon |
" " i | Block=[1024,1,1] Block=[1024,1,1] Block=[256,1,1] i
layer level information
" GPU Metrics e
| SP Flop Count=62GFlop i
GPU Tracer: i ORAM Wrke Syes-296M |
Built on top of CUPTI to e cievec Occpongm B]
capture CUDA runtime API, Model-, layer-, and GPU kernel-level profiles of MLPerf ResNet50 v1.5

GPU activities, GPU metrics with batch size 256 on a Volta GPU

M: Model-level Profiling L: Layer-level Profiling G: GPU Kernel-level Profiling

Model
1 - M Input 1 LI prediction |»| Ovutput
D e a I I n g W I t h Pre-Process 275.1ms Post-Process

Profiling Overhead

Pre-Process 275.1ms

= Profiling always comes W T
with overhead % P] B P e

__

Output
Post-Process

= XSP uses leveled | —
. . nput L »| Prediction
experimentation to Pre-Process
get accurate timing
MIL/G : .| Conv R
for all levels [< g

-
(e

Output

Post-Process

-
-
-
-
-
.-
-
-
-
-
-
-
-
-
-
-
-
4

=
o=
-
-
-
-
-
-
-
-

ShflTens OffstComp VoltaCUDNN_128x64

0.1ms Oms 4.9ms

__

M: Model-level Profiling L: Layer-level Profiling G: GPU Kernel-level Profiling

Model
M Input | I prediction |»| Ovtrut
Leve I e d Pre-Process 275.1ms Post-Process

Experimentation -roic,, - proie,, «

Output
Post-Process

Input

L »| Prediction
Pre-Process

= Profilers at level n R
accurately capture events e]
at level n ‘ Md| """"""""""""""

= Use traces from runs with e frocess || Toeer posroces
different profiling levels ~ —"_
enabled Profile,\,,/L/G—PAer/fLiftC:,\,,/L < i Y _I

-
_________ -

I

— Overhead,, = o

Profileo/__. In— Profileo/___ In-1

ShfiTens

0.1ms

OffstComp

Oms

4.9ms

Automated Across-stack Analysis

(]

The 15 analyses performed by XSP using profiles from one or more levels

Model-level profiling
Framework-level profiling
GPU-level profiling

Profiling End-to-End Framework NVIDIA
Analysis Provider Benchmarking Profilers Profilers XSP
Model throughput and latency M v X X v
Layer information L X v X v
Layer latency L X v X v
Layer allocated memory L X v X v
Layer type distribution L X v X v
Layer aggregated latency L X v X v
Layer aggregated allocated memory L X v X v
GPU information G X X v v
GPU roofline G X X v v
GPU aggregated information G X X v v
Layer aggregated GPU information L/G X X X v
Layer aggregated GPU metrics L/G X X X v
GPU vs CPU latency L/G X X X v
Layer roofline L/G X X X v
Model roofline M/L/G X X v v

Exa m p I e An a IyS I S https://ipdps20.netlify.com/tensorflow/mlperf resnet50 v1.5/

The top 5 most time-consuming GPU kernel invocations

m Layer Kernel Kernel Kernel Kernel Kernel .
Kernel DRAM DRAM Achieved Arithmetic Arithmetic
Layer Latency Kernel Reads Writes Occupancy Intensity Throughput Memory
Kernel Name Index (ms) Gflops (MB) (MB) (%) (flops/byte) (Tflops/s) Bound?
volta_cgemm_32x32_tn 221 6.04 77.42 40.33 43.86 12.18 876.97 12.82 X
volta_cgemm_32x32_tn 208 6.03 77.42 43.93 43.81 12.19 841.59 12.83 X
volta_scudnn_128x128 relu_interior_nn_vl 195 5.48 59.20 27.71 8.40 15.49 1,563.30 10.80 X
volta_scudnn_128x64 relu_interior nn_vl 3 491 62.89 11.55 283.05 13.20 203.58 12.81 X
volta_scudnn_128x128 relu_interior nn_ vl 57 4.56 59.24 34.83 37.64 15.15 779.55 12.99 X
Al3 Al4

3 100 F 18 Ll]

S g0 S h - .

2 8ot . i ° =

3 80; 3@10' ® ° ° ® .'.o

- 60 - 1 £ 0 L ® °

o f SN

N 40p 12 = sl

E o 50

B 0 7 g 0 : . 1 . 1 1 1 1 1 1 1 .x 1 1 1 1 1 1 1 1 1 1 1 1 1

pa 1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 < = 100 150 200 20

Layer Index Arithmetic Intensity (flops/byte)
GPU vs Non-GPU Normalized latency Layer roofline analysis

https://ipdps20.netlify.com/tensorflow/mlperf_resnet50_v1.5/

XSP Extensibility

@ Application = gucopriton | |closcaionl |
" Other profiling tools or methods o Combine |
. mage *
can be integrated = ——— | Closeton|
OModel T e
— More tracers at each stack level, e.g. [P | e] [P | [TEveode
| nput » ode e Output Output

CPU+GPU ©Framework """"""""" ~ [Bies |
— Capture more stack levels, e.g. ML ;

<
S~
~~
~
~
S~
-~
~~
-~
S~
-~
S~
-~
S~
~

library level and application level L B RS
— Work with accelerators and simulators @' " [t [[oo+ | |
= Add more types of analyses Otibrery | _ il Remel} - el (e

.« e OHardware "“3 | Page | Power | -
| Adc ML tralnlng Support \ Access | |Migration| | Draw 5

I

Conclusion

= XSP is an across-stack profiling design that aggregates profile
data from different sources and correlates them to construct a
holistic and hierarchical view of ML model execution

— A smooth hierarchical step-through of model performance at different
levels within the HW/SW stack to identify bottlenecks

— Systematic comparisons of models, frameworks, and hardware through
the consistent profiling and automated analysis workflows

— Extensible to accommodate different use cases

Thank you

More information in the paper

Cheng Li*1, Abdul Dakkak*1, Jinjun Xiong?2, Wei Wei3, Lingjie Xu3, Wen-mei Hwul
University of lllinois Urbana-Champaignl, IBM Research?, Alibaba Group

